Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (6): 500-506    DOI: 10.16511/j.cnki.qhdxxb.2020.25.017
  专题:能源领域中的多相流动基础及应用 本期目录 | 过刊浏览 | 高级检索 |
垂直上升光管中气液两相摩擦因子分析
唐国力1,2, 吴玉新1, 顾君苹1, 刘青1, 吕俊复1
1. 清华大学 能源与动力工程系, 热科学与动力工程教育部重点实验室, 北京 100084;
2. 华润智慧能源有限公司, 深圳 518001
Comparison of two-phase empirical multiplier correlations for high pressure steam-water mixtures flowing upward in a vertical smooth tube
TANG Guoli1,2, WU Yuxin1, GU Junping1, LIU Qing1, L�Junfu1
1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China;
2. China Resources Intelligent Energy Co. Ltd., Shenzhen 518001, China
全文: PDF(3156 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 管内气液两相流动压降是水动力计算中的重要参数,选取不同摩擦因子会影响到计算结果的精度。为分析不同摩擦因子的适用性,该文讨论了5种常见的全液相两相摩擦因子计算方法,对关键参数选取进行了敏感性分析,并将5种方法的计算结果与文献中高压下汽水工质在垂直光管内的实验结果进行了比较。结果表明:管径对5种计算方法的影响有限;壁面粗糙度对Chisholm方法和Chisholm B系数方法的计算结果影响较大,这2种方法的结果均随着壁面粗糙度的增加而减小;工质压力的增加会导致压降的计算结果减小;质量流速对Chisholm方法和83国标方法的计算结果影响较大,并且质量流速增加,计算压降减小。计算结果与实验结果的比较表明:在中、低干度区域,Chisholm方法、Friedel方法和改进Friedel方法的计算结果与实验数据比较接近;在高干度区域,83国标方法的计算结果与实验数据更为接近。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐国力
吴玉新
顾君苹
刘青
吕俊复
关键词 两相摩擦因子摩擦压降经验关系式汽水混合物两相流动    
Abstract:Good pressure drop predictions are critical for hydrodynamic simulations of gas-liquid two-phase flows. Good simulations must use the correct multiplier empirical correlations for the various key parameters for the hydrodynamic calculations. This study compared five two-phase empirical multiplier correlations. A parametric sensitivity analysis showed that the tube inside diameter had little effect on all five correlations. The wall roughness significantly influenced the Chisholm method and the Chisholm B coefficient method. The pressure and mass flux significantly influenced all five correlations, with the calculated values decreasing with increasing pressure and mass flux. The predictions were also compared with experimental data for high pressure steam-water mixtures flowing upward in a vertical smooth tube. For low steam qualities, the Chisholm method, Friedel method and improved Friedel method give the best predictions. For high steam quality flows, the 83 national standard method gives the best predictions. The differences between the experimental data and predictions decrease with increasing pressure.
Key wordstwo-phase multiplier    frictional pressure drop    empirical correlation    steam-water mixture    two-phase flow
收稿日期: 2019-09-17      出版日期: 2020-04-27
基金资助:国家重点研发计划项目(2016YFB0600201)
通讯作者: 吕俊复,教授,E-mail:lvjf@tsinghua.edu.cn     E-mail: lvjf@tsinghua.edu.cn
引用本文:   
唐国力, 吴玉新, 顾君苹, 刘青, 吕俊复. 垂直上升光管中气液两相摩擦因子分析[J]. 清华大学学报(自然科学版), 2020, 60(6): 500-506.
TANG Guoli, WU Yuxin, GU Junping, LIU Qing, L�Junfu. Comparison of two-phase empirical multiplier correlations for high pressure steam-water mixtures flowing upward in a vertical smooth tube. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 500-506.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.017  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I6/500
  
  
  
  
  
  
  
[1] EFFERT M, BRÜCKNER J. BENSON low mass flux vertically-tubed evaporators in the power market[Z]. MPS-Modern Power Systems, 2017.
[2] MARTINELLI R C, BOELTER L M K, TAYLOR T H M, et al. Isothermal pressure drop for two-phase two-component flow in a horizontal pipe[J]. Transactions of the ASME, 1944, 66(2):139-151.
[3] MARTINELLI R C, PUTNAM J A, LOCKHART R W. Two-phase two-component flow in the viscous region[J]. Transactions of the AIChE, 1946, 42:681.
[4] LOCKHART R W. An analysis of isothermal two-component, two-phase data[D]. Berkeley, CA, USA:University of California, 1945.
[5] LOCKHART R W, MARTINELLI R C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45(1):39-48.
[6] TUCAKOVIC D R, STEVANOVIC V D, ZIVANOVIC T, et al. Thermal-hydraulic analysis of a steam boiler with rifled evaporating tubes[J]. Applied Thermal Engineering, 2007, 27(2-3):509-519.
[7] LIU W, TAMAI H, TAKASE K. Pressure drop and void fraction in steam-water two-phase flow at high pressure[J]. Journal of Heat Transfer, 2013, 135(8):081502.
[8] 吕俊复. 超临界循环流化床锅炉水冷壁热负荷及水动力研究[D]. 北京:清华大学, 2005. LÜ J F. Investigation on heat flux and hydrodynamics of water wall of a supercritical pressure circulating fluidized bed boiler[D]. Beijing:Tsinghua University, 2005. (in Chinese)
[9] 崔鹏. 超超临界锅炉垂直管屏水冷壁流动特性研究[D]. 北京:华北电力大学, 2009. CUI P. The study for the flow characteristics of vertical tube platen water cooled wall in the ultra-supercritical boiler[D]. Beijing:North China Electric Power University, 2009. (in Chinese)
[10] 张大龙, 吴玉新, 张海, 等. 低质量流率垂直管圈超临界煤粉锅炉的水动力特性分析[J]. 中国电机工程学报, 2014, 34(32):5693-5700. ZHANG D L, WU Y X, ZHANG H, et al. Hydrodynamic characteristics of vertical tubes with low mass flux in supercritical pulverized coal boiler[J]. Proceedings of the CSEE, 2014, 34(32):5693-5700. (in Chinese)
[11] WANG H, CHE D F. Positive flow response characteristic in vertical tube furnace of supercritical once-through boiler[J]. Journal of Thermal Science and Engineering Applications, 2014, 6(3):031002.
[12] COLLIER J G, THOME J R. Convective boiling and condensation[M]. 3rd ed. Oxford:Oxford University Press, 1994.
[13] CHISHOLM D. Paper 35:The influence of mass velocity on friction pressure gradients during steam-water flow[C]//Proceedings of the Institution of Mechanical Engineers, Conference Proceedings. London, UK:SAGE publications, 1967, 182(8):336-341.
[14] LOCKHART R W, MARTINELLI R C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45(1):39-48.
[15] CHURCHILL S W. Friction factor equation spans all fluid flow regimes[J]. Chemical Engineering, 1977, 84(24):91-92.
[16] CHISHOLM D. Two-phase flow in pipelines and heat exchangers[M]. New York:G. Godwin in association with Institution of Chemical Engineers, 1983.
[17] MARTINELLI R C, NELSON D B. Prediction of pressure drop during forced-circulation of boiling water[J]. Transactions of the ASME, 1948, 70(6):695-702.
[18] FRIEDEL L. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow[C]//Proceedings of the European Two-Phase Group Meeting. Ispra, Italy, 1979.
[19] HEWITT G F. Pressure drop and void fraction[M]//HETSRONI G. Handbook of Multiphase Systems. New York:McGraw-Hill, 1982.
[20] WHALLEY P B. Boiling, condensation, and gas-liquid flow[M]. New York:Oxford University Press, 1987.
[21] 吕俊复, 吴玉新, 李舟航, 等. 气液两相流动与沸腾传热[M]. 北京:科学出版社, 2017. LÜ J F, WU Y X, LI Z H, et al. Gas-liquid two phase flow and boiling heat transfer[M]. Beijing:Science Press, 2017. (in Chinese)
[22] GRIEM H, KÖHLER W, SCHMIDT H. Heat transfer, pressure drop and stresses in evaporator water walls:From experiment to design[J]. VGB PowerTech, 1999, 79:26-35.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn