Optimization of the tribological characteristics of lubricant materials with granulated ZrO2
JI Zhengjia1,2, JIN Hongyun1, LUO Wanyue1, ZHOU Keke1, HOU Shuen1, XIE Guoxin2
1. Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; 2. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Abstract:This study investigated the effects of granulated ZrO2 on the tribological characteristics of lubrication composites. The composite materials were evaluated using constant speed friction and wear tests with the data analyzed using the preference selection index (PSI) method. The results showed that the optimum granulated ZrO2 content in this composite was 10% with the friction factor of 0.49. Fade tests and recovery tests also showed the variations of the wear rate, friction coefficient, fade ratio, recovery ratio, stability coefficient, and the friction fluctuation and variability coefficient for various granulated ZrO2 concentrations.
吉政甲, 靳洪允, 骆晚玥, 周可可, 侯书恩, 解国新. 造粒氧化锆增强复合材料的摩擦学性能及优化[J]. 清华大学学报(自然科学版), 2020, 60(8): 639-647.
JI Zhengjia, JIN Hongyun, LUO Wanyue, ZHOU Keke, HOU Shuen, XIE Guoxin. Optimization of the tribological characteristics of lubricant materials with granulated ZrO2. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 639-647.
[1] 赵磊, 张文, 孙振国, 等. 基于色彩分割及信息熵加权特征匹配的刹车片图像分类算法[J]. 清华大学学报(自然科学版), 2018, 58(6):547-552. ZHAO L, ZHANG W, SUN Z G, et al. Brake pad image classification algorithm based on color segmentation and information entropy weighted feature matching[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(6):547-552. (in Chinese) [2] BIJWE J. Composites as friction materials:Recent developments in non-asbestos fiber reinforced friction materials-A review[J]. Polymer Composites, 1997, 18(3):378-396. [3] YI G W, YAN F Y. Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers[J]. Wear, 2007, 262(1-2):121-129. [4] MA Y H, LIU Y C, MENON C, et al. Evaluation of wear resistance of friction materials prepared by granulation[J]. ACS Applied Materials & Interfaces, 2015, 7(41):22814-22820. [5] JIN H Y, ZHOU K K, JI Z J, et al. Comparative tribological behavior of friction composites containing natural graphite and expanded graphite[J]. Friction, 2019. DOI:10.1007/s40544-019-0293-3. [6] WU H W, CHEN Y Y, HORNG J H. Contact temperature under three-body dry friction conditions[J]. Wear, 2015, 330-331:85-92. [7] WANG Q H, ZHANG X R, PEI X Q. Study on the friction and wear behavior of basalt fabric composites filled with graphite and nano-SiO2[J]. Materials & Design, 2010, 31(3):1403-1409. [8] SONG J F, YU Y H, ZHAO G, et al. Comparative study of tribological properties of insulated and conductive polyimide composites[J]. Friction, 2019. DOI:10.1007/s40544-019-0269-3. [9] BOZ M, KURT A. The effect of Al2O3 on the friction performance of automotive brake friction materials[J]. Tribology International, 2007, 40(7):1161-1169. [10] SHEN M X, LI B, ZHANG Z N, et al. Abrasive wear behavior of PTFE for seal applications under abrasive-atmosphere sliding condition[J]. Friction, 2019. DOI:10.1007/s40544-019-0301-7. [11] 李国禄, 王昆林, 崔周平, 等. SiC颗粒填充单体浇铸尼龙的摩擦学性能[J]. 清华大学学报(自然科学版), 2000, 40(4):111-114. LI G L, WANG K L, CUI Z P, et al. Tribological properties of SiC particle filled in monomer cast nylon[J]. Journal of Tsinghua University (Science & Technology), 2000, 40(4):111-114. (in Chinese) [12] MATĚJKA V, LU Y F, FAN Y L, et al. Effects of silicon carbide in semi-metallic brake materials on friction performance and friction layer formation[J]. Wear, 2008, 265(7-8):1121-1128. [13] MATĚJKA V, LU Y F, JIAO L, et al. Effects of silicon carbide particle sizes on friction-wear properties of friction composites designed for car brake lining applications[J]. Tribology International, 2010, 43(1-2):144-151. [14] MA Y N, MARTYNKOVÁ G S, VALÁŠKOVÁ M, et al. Effects of ZrSiO4 in non-metallic brake friction materials on friction performance[J]. Tribology International, 2008, 41(3):166-174. [15] LEE E J, HWANG H J, LEE W G, et al. Morphology and toughness of abrasive particles and their effects on the friction and wear of friction materials:A case study with zircon and quartz[J]. Tribology Letters, 2010, 37(3):637-644. [16] KIM S S, HWANG H J, SHIN M W, et al. Friction and vibration of automotive brake pads containing different abrasive particles[J]. Wear, 2011, 271(7-8):1194-1202. [17] THAKARE M R, WHARTON J A, WOOD R J K, et al. Effect of abrasive particle size and the influence of microstructure on the wear mechanisms in wear-resistant materials[J]. Wear, 2012, 276-277:16-28. [18] SHIN M W, KIM Y H, JANG H. Effect of the abrasive size on the friction effectiveness and instability of brake friction materials:A case study with zircon[J]. Tribology Letters, 2014, 55(3):371-379. [19] GOMEZ V A O, DE MACÊDO M C S, SOUZA R M, et al. Effect of abrasive particle size distribution on the wear rate and wear mode in micro-scale abrasive wear tests[J]. Wear, 2015, 328-329:563-568. [20] LAZIM A R M, KCHAOU M, HAMID M K A, et al. Squealing characteristics of worn brake pads due to silica sand embedment into their friction layers[J]. Wear, 2016, 358-359:123-136. [21] BIJWE J, ARANGANATHAN N, SHARMA S, et al. Nano-abrasives in friction materials-influence on tribological properties[J]. Wear, 2012, 296:693-701. [22] ÖSTERLE W, DMITRIEV A I, WETZEL B, et al. The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite[J]. Materials & Design, 2016, 93:474-484. [23] ETEMADI H, SHOJAEI A, JAHANMARD P. Effect of alumina nanoparticle on the tribological performance of automotive brake friction materials[J]. Journal of Reinforced Plastics and Composites, 2014, 33(2):166-178. [24] SONG H J, ZHANG Z Z, MEN X H, et al. A study of the tribological behavior of nano-ZnO-filled polyurethane composite coatings[J]. Wear, 2010, 269:79-85. [25] MYSHKIN N, KOVALEV A. Adhesion and surface forces in polymer tribology-A review[J]. Friction, 2018, 6(2):143-155. [26] SONG H J, ZHANG Z Z. Investigation of the tribological properties of polyfluo wax/polyurethane composite coating filled with nano-SiC or nano-ZrO2[J]. Materials Science and Engineering:A, 2006, 426(1-2):59-65. [27] MA J Q, BAI M W. Effect of ZrO2 nanoparticles additive on the tribological behavior of multialkylated cyclopentanes[J]. Tribology Letters, 2009, 36(3):191-198. [28] MENAPACE C, LEONARDI M, PERRICONE G, et al. Pin-on-disc study of brake friction materials with ball-milled nanostructured components[J]. Materials & Design, 2017, 115:287-298. [29] WU Y Q, ZENG M, JIN H Y, et al. Effects of glass-to-rubber transition on the friction properties of ZrO2 reinforced polybenzoxazine nanocomposites[J]. Tribology Letters, 2012, 47(3):389-398. [30] 冯西桥, 余寿文. 复合材料中增强相形状对有效模量的影响(Ⅰ)[J]. 清华大学学报(自然科学版), 2001, 41(11):8-10, 14.FENG X Q, YU S W. Effects of reinforcement shape on the effective moduli of composites (I)[J]. Journal of Tsinghua University (Science & Technology), 2001, 41(11):8-10, 14. (in Chinese) [31] MANIYA K, BHATT M G. A selection of material using a novel type decision-making method:Preference selection index method[J]. Materials & Design, 2010, 31(4):1785-1789. [32] SINGH T, PATNAIK A, GANGIL B, et al. Optimization of tribo-performance of brake friction materials:Effect of nano filler[J]. Wear, 2015, 324-325:10-16. [33] 吉政甲. 树脂基摩擦材料组分形态及其对摩擦性能影响研究[D]. 武汉:中国地质大学, 2017.JI Z J. Study on the component morphology and tribological properties of resin based friction materials[D]. Wuhan:China University of Geosciences, 2017.