Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (11): 895-901    DOI: 10.16511/j.cnki.qhdxxb.2020.25.022
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
锌空燃料电池老化实验研究与机理分析
陈东方, 裴普成, 宋鑫
清华大学 汽车安全与节能国家重点实验室, 北京 100084
Aging experimental investigation and mechanism analysis for zinc-air fuel cells
CHEN Dongfang, PEI Pucheng, SONG Xin
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(6102 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 耐久性不足严重制约了锌空燃料电池的商业化发展,对电池的老化特性及机理进行实验研究和分析十分必要。该文基于电池应用时面临的单次稳定运行、长周期连续稳定运行、停机储存和周期性启停循环等主要工况提出了锌空燃料电池的耐久性测试评价方法,开展了老化实验。研究了不同工况下电池的老化特性,并结合实验结果分析了老化机理。最后,从电解液管理、延长空气电极寿命和电池管理3个方面提出了延缓电池老化的方法。实验结果表明:该文提出的耐久性测试评价方法可用于锌空燃料电池的老化特性及耐久性提升方法的研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈东方
裴普成
宋鑫
关键词 锌空燃料电池老化工况机理空气电极    
Abstract:The commercial development of zinc-air fuel cells is limited by their lack of durability. A zinc-air fuel cell durability test evaluation method was developed based on the working conditions for short term stable operation, long term continuous stable operation, shutdown storage and periodic start-stop cycles. The aging characteristics of zinc-air fuel cells were then experimentally investigated for various operating conditions to study the aging mechanism. Finally, several methods were developed to slow the aging through electrolyte management, methods to extend the air cathode lifetime, and zinc-air fuel cell management. The durability test evaluation method presented in this paper can be used to study the aging characteristics and durability of zinc-air fuel cells.
Key wordszinc-air fuel cell    aging    working condition    mechanism    air cathode
收稿日期: 2019-09-27      出版日期: 2020-08-31
基金资助:裴普成,教授,E-mail:pchpei@mail.tsinghua.edu.cn
引用本文:   
陈东方, 裴普成, 宋鑫. 锌空燃料电池老化实验研究与机理分析[J]. 清华大学学报(自然科学版), 2020, 60(11): 895-901.
CHEN Dongfang, PEI Pucheng, SONG Xin. Aging experimental investigation and mechanism analysis for zinc-air fuel cells. Journal of Tsinghua University(Science and Technology), 2020, 60(11): 895-901.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.022  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I11/895
  
  
  
  
  
  
[1] KIM H, JEONG G, KIM Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chemical Society Reviews, 2013, 42(23):9011-9034.
[2] LEE J S, TAI KIM S, CAO R G, et al. Metal-air batteries with high energy density:Li-air versus Zn-air[J]. Advanced Energy Materials, 2011, 1(1):34-50.
[3] XU N N, LI X M, LI H R, et al. A novel composite (FMC) to serve as a durable 3D-clam-shaped bifunctional cathode catalyst for both primary and rechargeable zinc-air batteries[J]. Science Bulletin, 2017, 62(17):1216-1226.
[4] YANG D, TAN H T, RUI X H, et al. Electrode materials for rechargeable zinc-ion and zinc-air batteries:Current status and future perspectives[J]. Electrochemical Energy Reviews, 2019, 2(3):395-427.
[5] 王希忠, 姜智红, 刘伯文, 等. 车用锌空燃料电池系统开发研究[J]. 清华大学学报(自然科学版), 2013, 53(8):1150-1154. WANG X Z, JIANG Z H, LIU B W, et al. Developing a zinc-air fuel cell system for vehicle applications[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(8):1150-1154. (in Chinese)
[6] CHENG F Y, CHEN J. Metal-air batteries:From oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41(6):2172-2192.
[7] WANG K L, PEI P C, WANG Y C, et al. Advanced rechargeable zinc-air battery with parameter optimization[J]. Applied Energy, 2018, 225:848-856.
[8] XU N N, LIU Y Y, ZHANG X, et al. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery[J]. Scientific Reports, 2016, 6:33590.
[9] PEI P C, MA Z, WANG K L, et al. High performance zinc air fuel cell stack[J]. Journal of Power Sources, 2014, 249:13-20.
[10] SMEDLEY S I, ZHANG X G. A regenerative zinc-air fuel cell[J]. Journal of Power Sources, 2007, 165(2):897-904.
[11] YI J, LIANG P C, LIU X Y, et al. Challenges, mitigationstrategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries[J]. Energy & Environmental Science, 2018, 11(11):3075-3095.
[12] FU J, LIANG R L, LIU G H, et al. Recent progress in electrically rechargeable zinc-air batteries[J]. Advanced Materials, 2019, 31(31):e1805230.
[13] DAVARI E, IVEY D G. Bifunctional electrocatalysts for Zn-air batteries[J]. Sustainable Energy & Fuels, 2018, 2(1):39-67.
[14] JIRATCHAYAMAETHASAKUL C, SRIJAROENPRAMONG N, BUNYANGYUEN T, et al. Effects of anode orientation and flow channel design on performance of refuelable zinc-air fuel cells[J]. Journal of Applied Electrochemistry, 2014, 44(11):1205-1218.
[15] NEBURCHILOV V, WANG H J, MARTIN J J, et al. A review on air cathodes for zinc-air fuel cells[J]. Journal of Power Sources, 2010, 195(5):1271-1291.
[16] 马泽. 锌空气燃料电池性能影响因素及性能衰减机理研究[D]. 北京:清华大学, 2015. MA Z. Research on the influence factor of zinc air fuel cell stack and performance degradation mechanism[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[17] MA Z, PEI P C, WANG K L, et al. Degradation characteristics of air cathode in zinc air fuel cells[J]. Journal of Power Sources, 2015, 274:56-64.
[18] WANG Y J, FANG B Z, ZHANG D, et al. A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries[J]. Electrochemical Energy Reviews, 2018, 1(1):1-34.
[19] SAPKOTA P, KIM H. Zinc-air fuel cell, a potential candidate for alternative energy[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(4):445-450.
[20] HOPKINS B J, SHAO-HORN Y, HART D P. Suppressing corrosion in primary aluminum-air batteries via oil displacement[J]. Science, 2018, 362(6415):658-661.
[1] 王鑫, 赵钢, 曲新鹤, 王捷, 王鹏. 某小型模块化反应堆核电站二回路系统变工况特性[J]. 清华大学学报(自然科学版), 2024, 64(1): 155-163.
[2] 董强, 陈强, 黄科, 邢伟, 沈兵. 航天器低重力模拟试验平台三维随动系统[J]. 清华大学学报(自然科学版), 2023, 63(3): 449-460.
[3] 赵炬颖, 徐乙人, 祝天一, 祁志浩, 李永健. 自适应迷宫密封仿真及实验研究[J]. 清华大学学报(自然科学版), 2022, 62(3): 463-469.
[4] 王玉杰, 孙平, 李文新, 张强. 西域砾岩边坡破坏机制及稳定分析方法[J]. 清华大学学报(自然科学版), 2021, 61(8): 863-872.
[5] 郭飞, 程甘霖, 张兆想, 黄兴, 贾晓红. 聚合物软材料磨损硬质材料机理研究进展[J]. 清华大学学报(自然科学版), 2021, 61(6): 643-652.
[6] 姜齐荣, 赵崇滨. 并网逆变器的电磁暂态同步稳定问题[J]. 清华大学学报(自然科学版), 2021, 61(5): 415-428.
[7] 李玉龙, 何永勇, 雒建斌. 航空柱塞泵关键摩擦副表面改性与性能增强[J]. 清华大学学报(自然科学版), 2021, 61(12): 1405-1422.
[8] 苗苗, 张缦, 吕俊复, 杨海瑞, 张凯. 流化床燃烧中N2O生成机理与减排技术[J]. 清华大学学报(自然科学版), 2020, 60(6): 507-517.
[9] 陈东方, 裴普成, 宋鑫, 任棚. 锌空燃料电池电化学阻抗等效电路模型[J]. 清华大学学报(自然科学版), 2020, 60(2): 139-146.
[10] 裴普成, 陈嘉瑶, 吴子尧. 锂离子电池自放电机理及测量方法[J]. 清华大学学报(自然科学版), 2019, 59(1): 53-65.
[11] 贾楠, 刘呈, 钱静. 基于安全系统相似机理模型的事故分析[J]. 清华大学学报(自然科学版), 2018, 58(11): 1006-1012.
[12] 关添, 杨木群, 魏子昆, 姜宇程, 王健. 光刺激耳蜗听神经的机理仿真[J]. 清华大学学报(自然科学版), 2017, 57(10): 1102-1105.
[13] 范红雨, 陆奇志, 龚景松, 朴英. 加力燃油离心泵关死点工况引射冷却分析[J]. 清华大学学报(自然科学版), 2016, 56(6): 661-665.
[14] 黄首清,索双富,李永健,顾新民,王玉明. 刷式密封流场和温度场的3维数值计算[J]. 清华大学学报(自然科学版), 2014, 54(6): 805-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn