Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (11): 902-909    DOI: 10.16511/j.cnki.qhdxxb.2020.26.021
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
底部爆炸条件下车内乘员损伤风险仿真评估
王波1, 何洋扬2, 聂冰冰1, 许述财1, 张金换1
1. 清华大学 汽车安全与节能国家重点实验室, 北京 100084;
2. 中国人民解放军 32184部队, 北京 100093
Numerical investigation of vehicle occupant injury risks in underbody blast events
WANG Bo1, HE Yangyang2, NIE Bingbing1, XU Shucai1, ZHANG Jinhuan1
1. State Key Laboratory Automotive Safety and Energy, Tsinghua University, Beijing 100084, China;
2. Unit 32184 of the PLA, Beijing 100093, China
全文: PDF(2993 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在近年来发生的几场局部战争中,地雷及简易爆炸物造成了大量人员伤亡。为了解车辆底部爆炸条件下车内乘员的损伤特点,构建了包含乘员、车体结构及爆炸流场的仿真模型,研究了车辆乘员身体主要部位损伤风险。利用LS-DYNA的流固耦合算法求解爆炸流场与车体结构的相互作用,分析了爆炸冲击的传递路径及乘员典型运动姿态。基于人体有限元模型,以6 kg及8 kg TNT 2个爆炸当量工况为研究对象,对车辆乘员头部、脊椎、骨盆及下肢等身体部位进行损伤风险评估。仿真结果表明:对于佩戴安全带的乘员,其足踝部及胫腓骨损伤的风险最高,其次为骨盆及胸腰椎。研究结果可为车辆防护设计提供参考,从而提高乘员安全性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王波
何洋扬
聂冰冰
许述财
张金换
关键词 汽车安全生物损伤力学车辆底部爆炸下肢人体有限元模型    
Abstract:Landmines and improvised explosive devices have caused many casualties in recent conflicts. A model including the occupant, the vehicle and the explosion flow field was developed to analyze occupant injuries resulting from underbody blast. The fluid-structure coupling algorithm of LS-DYNA was used to simulate the blast effect on the vehicle hull, the transmission path of the blast load and the occupant kinematic response. Head, spine, pelvis and lower extremity injury risks were investigated for 6 kg and 8 kg TNT explosion cases using a finite element human body model. The simulations show that for belted occupants, the ankle-foot complex, tibia and fibula have the highest risk of injury, followed by the pelvis and thoracolumbar spine. These results can be used to design vehicle protection systems to improve occupant safety.
Key wordsautomotive safety    injury biomechanics    underbody blast    lower extremity    finite element human body model
收稿日期: 2020-02-29      出版日期: 2020-08-31
基金资助:张金换,研究员,E-mail:zhjh@tsinghua.edu.cn
引用本文:   
王波, 何洋扬, 聂冰冰, 许述财, 张金换. 底部爆炸条件下车内乘员损伤风险仿真评估[J]. 清华大学学报(自然科学版), 2020, 60(11): 902-909.
WANG Bo, HE Yangyang, NIE Bingbing, XU Shucai, ZHANG Jinhuan. Numerical investigation of vehicle occupant injury risks in underbody blast events. Journal of Tsinghua University(Science and Technology), 2020, 60(11): 902-909.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.021  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I11/902
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] OWENS B D, KRAGH J F, WENKE J C, et al. Combat wounds in Operation Iraqi Freedom and Operation Enduring Freedom[J]. Journal of Trauma-injury Infection and Critical Care, 2008, 64(2):295-299.
[2] ALVAREZ J. Epidemiology of blast injuries in current operations[C]//A Survey of Blast Injury Across the Full Landscape of Military Science. Halifax, Canada:NATO Science and Technology Organization, 2011.
[3] MCKAY B J, BIR C A. Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events[J]. Stapp Car Crash Journal, 2009, 53:229-249.
[4] YOGANANDAN N, MOORE J, ARUN M W, et al. Dynamic responses of intact post mortem human surrogates from inferior-to-superior loading at the pelvis[J]. Stapp Car Crash Journal, 2014, 58:123-143.
[5] LEI J Y, ZHU F, JIANG B H, et al. Underbody blast effect on the pelvis and lumbar spine:A computational study[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79:9-19.
[6] DONG L, ZHU F, JIN X, et al. Blast effect on the lower extremities and its mitigation:A computational study[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28:111-124.
[7] RAMASAMY A, HILL A M, MASOUROS S, et al. Blast-related fracture patterns:A forensic biomechanical approach[J]. Journal of the Royal Society Interface, 2011, 8(58):689-698.
[8] DEY S, HOPPERSTAD O S, BORVIK T, et al. Constitutive relation and failure criterion for three structural steels at high strain rates[J]. Structures Under Shock & Impact VⅡ, 2002, 63:427-436.
[9] DOBRATZ B M. Properties of chemical explosives and explosive simulants:UCRL-51319[R]. Livermore:Lawrence Livermore National Laboratory, 1972.
[10] KRIEG R D. A simple constitutive description for cellular concrete:SC-DR-72-0883[R]. Albuquerque:Sandia National Laboratory, 1972.
[11] North Atlantic Treaty Organization. Procedures for evaluating the protection level of armored vehicles-mine threat:AEP-55, Volume 2[S]. Brussels:Allied Engineering Publication, 2011.
[12] ZHANG L, YANG K H, KING A I. A proposed injury threshold for mild traumatic brain injury[J]. Journal of Biomechanical Engineering, 2004, 126(2):226-236.
[13] MERTZ H J, PATRICK L M, Strength and response of the human neck:710855[R]. Warrendale:SAE International, 1971.
[14] SONG E, TROSSEILLE X, GUILLEMOT H. Side impact:Influence of impact conditions and bone mechanical properties on pelvic response using a fracturable pelvis model[J]. Stapp Car Crash Journal, 2006, 50:75-95.
[15] Elemance L L C. GHBMC user manual:M50 detailed occupant, Version 4.5 for LS-DYNA[R]. Winston-Salem:Elemance LLC, 2016.
[16] RUPP J D, REED M P, VON EE C A, et al. The tolerance of the human hip to dynamic knee loading[J]. Stapp Car Crash Journal, 2002, 46:211-228.
[17] KUPPA S, WANG J, HAFFNER M, et al. Lower extremity injuries and associated injury criteria[C]//Proceedings of the 17th International Technical Conference on Enhanced Safety of Vehicles. Amsterdam, Netherlands:SAE International, 2001.
[18] YOGANANDAN N, PINTAR F A, BOYNTON M, et al. Dynamic axial tolerance of the human foot-ankle complex[J]. Stapp Car Crash Journal, 1996(40):1887-1898.
[19] USA Scociety of Automotive Engineers. Instrumentation for impact test-part 1:Electronic instrumentation:J211-1[S]. Warrendale:SAE International, 2007.
[20] SCHOENFELD A J, DUNN J C, BELMONT P J. Pelvic, spinal and extremity wounds among combat-specific personnel serving in Iraq and Afghanistan (2003-2011):A new paradigm in military musculoskeletal medicine[J]. Injury, 2013, 44(12):1866-1870.
[1] 潘飞羽, 贾炎冰, 杨孟辉, 吕逸飞, 赵军, 郝智秀, 王人成. 卧姿下肢康复训练运动生物力学特性[J]. 清华大学学报(自然科学版), 2023, 63(12): 1984-1993.
[2] 李银波, 汤子汉, 季林红, 蒙奎霖, 李质斌, 关鑫宇. 下肢外骨骼人机互连装置对关节内力的影响[J]. 清华大学学报(自然科学版), 2019, 59(7): 544-550.
[3] 杜雯菁, 罗逍, 黄晗, 许述财, 张金换. 基于中国人体CT数据的股骨和胫骨参数化模型的开发[J]. 清华大学学报(自然科学版), 2019, 59(3): 211-218.
[4] 李沛雨, 许述财, 杜雯菁, 李浩, 张金换. 中国人肋骨密质骨厚度的测定与特征分析[J]. 清华大学学报(自然科学版), 2017, 57(8): 815-820,831.
[5] 马青川, 季林红, 王人成, 李伟. 用于截瘫患者康复训练的足底轮式驱动外骨骼[J]. 清华大学学报(自然科学版), 2017, 57(6): 597-603.
[6] 罗逍, 姚远, 张金换. 一种毫米波雷达和摄像头联合标定方法[J]. 清华大学学报(自然科学版), 2014, 54(3): 289-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn