Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (11): 920-926    DOI: 10.16511/j.cnki.qhdxxb.2020.22.017
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于个性化导联选择策略的脑机交互康复训练临床初步研究
贾天宇1, 钱超1, 李翀1, 季林红1, 刘爱贤2, 方伯言2
1. 清华大学 机械工程系, 摩擦学国家重点实验室智能与生物机械分室, 北京 100084;
2. 首都医科大学附属北京康复医院, 北京 100144
Individualized channel-selection strategy-based brain-machine interaction rehabilitation training: A pilot study of clinical experiments
JIA Tianyu1, QIAN Chao1, LI Chong1, JI Linhong1, LIU Aixian2, FANG Boyan2
1. Division of Intelligent and Biomechanical System, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100144, China
全文: PDF(4542 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 脑机交互(BMI)技术可识别人体运动意图,并控制机器人辅助卒中患者患肢动作,有效刺激肢体运动及感觉反馈神经环路。卒中患者的损伤类型、损伤程度和损伤部位极具个性化,大脑皮层中运动意图的表达可能会出现不同程度的迁移现象。该文提出一种基于个性化导联选择策略的脑机交互康复训练方法,将患者运动意图表达脑区作为BMI系统信号采集点。该研究共纳入3位卒中患者,分别完成10 d的康复训练,采用基于个性化导联选择策略的BMI康复训练方法,所有患者分别在训练前、后进行临床量表评价和脑电信号(EEG)评估。结果显示:受试者在训练后Fugl-Meyer量表评分提升,其中1位出现运动诱发电位,表征神经通路激活。该基于个性化导联选择策略的脑机交互康复训练方法应在大量患者样本中进一步验证。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾天宇
钱超
李翀
季林红
刘爱贤
方伯言
关键词 卒中运动康复脑机交互脑电个性化闭环训练    
Abstract:Brain-machine interactions (BMI) can recognize motor intentions and transfer the intentions to control a rehabilitation robot assisting paralyzed limb movement, which can effectively stimulate the neural pathways for motor control and sensory feedback. Lesion types, lesion degrees and lesion sites vary from patient to patient. Motor intention expression may then shift to different brain regions depending on the lesion characteristics. This study presents an individualized channel-selection strategy-based BMI rehabilitation training method which uses the individualized motor expression encephalic area as the electroencephalogram (EEG) collection site. Three stroke patients were recruited for this study and were trained for 10 days using individualized channel-selection strategy-based BMI rehabilitation training. All the patients were assessed using a clinical evaluation scale and EEG tests before and after the 10 day training. The results show that after the training the subjects have improved Fugl-Meyer assessments and one of the subjects regains motor evoked potential which indicates the activation of the neural pathway. This individualized channel-selection strategy-based BMI rehabilitation training method should be further validated with a large number of stroke patients in the future.
Key wordsstroke motor rehabilitation    brain-machine interaction    electroencephalogram    individualization    closed-loop training
收稿日期: 2020-03-11      出版日期: 2020-08-31
基金资助:李翀,助理研究员,E-mail:chongli@tsinghua.edu.cn
引用本文:   
贾天宇, 钱超, 李翀, 季林红, 刘爱贤, 方伯言. 基于个性化导联选择策略的脑机交互康复训练临床初步研究[J]. 清华大学学报(自然科学版), 2020, 60(11): 920-926.
JIA Tianyu, QIAN Chao, LI Chong, JI Linhong, LIU Aixian, FANG Boyan. Individualized channel-selection strategy-based brain-machine interaction rehabilitation training: A pilot study of clinical experiments. Journal of Tsinghua University(Science and Technology), 2020, 60(11): 920-926.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.017  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I11/920
  
  
  
  
  
  
  
  
  
  
  
  
[1] WARRAICH Z, KLEIM J A. Neural plasticity:The biological substrate for neurorehabilitation[J]. PM&R, 2010, 2(12):S208-S219.
[2] CHAUDHARY U, BIRBAUMER N, RAMOS- MURGUIALDAY A. Brain-computer interfaces for communication and rehabilitation[J]. Nature Reviews Neurology, 2016, 12(9):513-525.
[3] ONO T, SHINDO K, KAWASHIMA K, et al. Brain- computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke[J]. Frontiers in Neuroengineering, 2014, 7:19.
[4] RAMOS-MURGUIALDAY A, BROETZ D, REA M, et al. Brain-machine interface in chronic stroke rehabilitation:A controlled study[J]. Annals of Neurology, 2013, 74(1):100-108.
[5] ANG K K, GUAN C, PHUA K S, et al. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation:Results of a three-armed randomized controlled trial for chronic stroke[J]. Frontiers in Neuroengineering, 2014, 7:30.
[6] ONO T, TOMITA Y, INOSE M, et al. Multimodal sensory feedback associated with motor attempts alters BOLD responses to paralyzed hand movement in chronic stroke patients[J]. Brain Topography, 2015, 28(2):340-351.
[7] TAM W K, TONG K Y, MENG F, et al. A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects:A multi-session study[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(6):617-627.
[8] FRISOLI A, LOCONSOLE C, LEONARDIS D, et al. A new gaze-BCI-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2012, 42(6):1169-1179.
[9] ZHANG L, ZHANG C, HIGASHI H, et al. Common spatial pattern using multivariate EMD for EEG classification [C]//Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference 2011. Xi'an, China, 2011:244-248.
[10] FEYDY A, CARLIER R, ROBYBRAMI A, et al. Longitudinal study of motor recovery after stroke recruitment and focusing of brain activation[J]. Stroke:A Journal of Cerebral Circulation, 2002, 33(6):1610-1617.
[11] LI C, JIA T, XU Q, et al. Brain-computer interfacechannel-selection strategy based onanalysis of event-related desynchronization topography in stroke patients[J]. Journal of Healthcare Engineering, 2019, 2019:3817124.
[12] LOTZE M, MARKERT J, SAUSENG P, et al. The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion[J]. The Journal of Neuroscience, 2006, 26(22):6096-6102.
[13] BIERNASKIE J, SZYMANSKA A, WINDLE V, et al. Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats[J]. European Journal of Neuroscience, 2005, 21(4):989-999.
[14] ROSEBOOM W, LINARES D, NISHIDA S Y. Sensory adaptation for timing perception[J]. Proceedings of the Royal Society B:Biological Sciences, 2015, 282(1805):20142833.
[15] DELORME A, MAKEIG S. EEGLAB:An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis[J]. Journal of Neuroscience Methods, 2004, 134(1):9-21.
[16] PFURTSCHELLER G, LOPES DA SILVA F H. Event-related EEG/MEG synchronization and desynchronization:Basic principles[J]. Clinical Neurophysiology, 1999, 110(11):1842-1857.
[1] 曹新颖, 郑德城, 秦培成, 李小冬. 建筑工业噪声对工人学习效率的影响——基于脑电的研究[J]. 清华大学学报(自然科学版), 2024, 64(2): 189-197.
[2] 张守胜, 庄滕飞, 方星星, 朱华, 唐玮. 条形状精细纹理的触觉感知深度识别阈值[J]. 清华大学学报(自然科学版), 2024, 64(1): 135-145.
[3] 杨思琴, 江铭虎. 汉语[S+V+O]简单句式的语义和句法加工研究——ERPs实验证据[J]. 清华大学学报(自然科学版), 2022, 62(12): 2053-2060.
[4] 赵蕾蕾,李翀,季林红,杨铁牛. 基于虚拟现实的自动驾驶模式中晕动受试者的脑电特征[J]. 清华大学学报(自然科学版), 2020, 60(12): 993-998.
[5] 王建凯,吴方芳,狄雅政,张洁,李翀,季林红. 经颅直流电刺激对注意力广度的影响[J]. 清华大学学报(自然科学版), 2020, 60(12): 999-1006.
[6] 王春慧, 江京, 李海洋, 许敏鹏, 印二威, 明东. 基于动态自适应策略的SSVEP快速目标选择方法[J]. 清华大学学报(自然科学版), 2018, 58(9): 788-795.
[7] 袁媛, 郝红伟, 李路明. 复合动作电位与迷走神经刺激个性化参数调控[J]. 清华大学学报(自然科学版), 2017, 57(2): 134-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn