Abstract:The active tectonic movements and the unique climate on the Tibetan Plateau cause significant spatial differences in the drainage network on the Plateau. The drainage network and the longitudinal profiles of the main streams of three river basins were extracted from 90 m resolution SRTM DEM using DEMRiver to study the factors controlling the drainage network in the Tibetan Plateau. The Yalong River had a bifurcation ratio of 4.46 and a length ratio of 2.35, the Tao River had a bifurcation ratio of 5.00 and a length ratio of 2.71 and the Lasa River had a bifurcation ratio of 4.37 and a length ratio of 2.30. The normalized concavity index for the Tao River was -0.129, that for the Lasa River was -0.082 and that for the Yalong River was 0.009, indicating that the profiles of the first two rivers are concave-up while that of the Yalong River is convex-up. The Horton ratio obtained using the original definition and the fitting method and the climatic conditions and tectonic activities in the basin show that the climate effect is well reflected in the structure of the low-level river network. Strong tectonic movement destroyed the network of the Yalong River Basin with the network now maintaining balance through river capture, indicating that the tectonic movement controls the structure of the high-level river network.
李敏慧, 陈毅, 吴保生. 青藏高原典型流域河网特性及控制因素[J]. 清华大学学报(自然科学版), 2020, 60(11): 951-957.
LI Minhui, CHEN Yi, WU Baosheng. Analysis of features and factors controlling typical drainage networks in the Tibetan Plateau. Journal of Tsinghua University(Science and Technology), 2020, 60(11): 951-957.
[1] 许炯心, 李炳元, 杨小平, 等. 中国地貌与第四纪研究的近今进展与未来展望[J]. 地理学报, 2009, 64(11):1375-1393. XU J X, LI B Y, YANG X P, et al. Recent progress in geomorphology and quaternary geology in China and some perspectives[J]. Acta Geographica Sinica, 2009, 64(11):1375-1393. (in Chinese) [2] PERRON J T, RICHARDSON P W, FERRIER K L, et al. The root of branching river networks[J]. Nature, 2012, 492(7427):100-103. [3] SEYBOLD H, ROTHMAN D H, KIRCHNER J W. Climate's watermark in the geometry of stream networks[J]. Geophysical Research Letters, 2017, 44(5):2272-2280. [4] ZANARDO S, ZALIAPIN I, FOUFOULA-GEORGIOU E. Are American rivers Tokunaga self-similar? New results on fluvial network topology and its climatic dependence[J]. Journal of Geophysical Research:Earth Surface, 2013, 118(1):166-183. [5] TOKUNAGA E. The composition of drainage network in Toyohira river basin and valuation of Horton's first law[J]. Geophysical Bulletin of the Hokkaido University, 1966, 15:1-19. [6] 柏睿. 大规模河网提取方法与河流结构规律[D]. 北京:清华大学, 2015. BAI R. Large scale drainage network extraction and river structure rules[D]. Beijing:Tsinghua University, 2015. (in Chinese) [7] GUPTA S. Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin[J]. Geology, 1997, 25(1):11-14. [8] WALCOTT R C, SUMMERFIELD M A. Universality and variability in basin outlet spacing:Implications for the two-dimensional form of drainage basins[J]. Basin Research, 2009, 21(2):147-155. [9] 刘乐, 王兆印, 余国安, 等. 青藏高原河网统计规律及高原抬升的影响[J]. 清华大学学报(自然科学版), 2015, 55(9):964-970. LIU L, WANG Z Y, YU G A, et al. Statistical features of the drainage network in the Qinghai-Tibet Plateau and the effect of the uplift[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(9):964-970. (in Chinese) [10] KIRBY E, WHIPPLE K X. Expression of active tectonics in erosional landscapes[J]. Journal of Structural Geology, 2012, 44:54-75. [11] PHILLIPS J D, LUTZ J D. Profile convexities in bedrock and alluvial streams[J]. Geomorphology, 2008, 102(3-4):554-566. [12] ROE G H, MONTGOMERY D R, HALLET B. Effects of orographic precipitation variations on the concavity of steady-state river profiles[J]. Geology, 2002, 30(2):143-146. [13] 王一舟, 张会平, 郑德文, 等. 非均衡河道高程剖面及其蕴含的构造活动信息[J]. 第四纪研究, 2018, 38(1):220-231. WANG Y Z, ZHANG H P, ZHENG D W, et al. River longitudinal profiles under transient state and the related tectonic signals[J]. Quaternary Sciences, 2018, 38(1):220-231. (in Chinese) [14] 胡小飞, 潘保田, KIRBY E, 等. 河道陡峭指数所反映的祁连山北翼抬升速率的东西差异[J]. 科学通报, 2010, 55(23):2329-2338. HU X F, PAN B T, KIRBY E, et al. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, Northeast Tibetan Plateau[J]. Chinese Science Bulletin, 2010, 55(27):3205-3214. (in Chinese) [15] WHIPPLE K X. Bedrock rivers and the geomorphology of active orogens[J]. Annual Review of Earth and Planetary Sciences, 2004, 32:151-185. [16] ZAPROWSKI B J, PAZZAGLIA F J, EVENSON E B. Climatic influences on profile concavity and river incision[J]. Journal of Geophysical Research, 2005, 110(F3):F03004. [17] CHEN S A, MICHAELIDES K, GRIEVE S W D, et al. Aridity is expressed in river topography globally[J]. Nature, 2019, 573(7775):573-577. [18] 中国地质科学院成都地质矿产研究所. 青藏高原及邻区地质图1:1500000[M]. 成都:地质出版社, 2004. Chengdu Institute of Geological and Mineral Resources, China Geology Survey. Geological map of Qinghai-Xizang (Tibet) and adjacent areas[M]. Chengdu:Geological Press, 2004. (in Chinese) [19] OWEN L A, DORTCH J M. Nature and timing of quaternary glaciation in the Himalayan-Tibetan orogen[J]. Quaternary Science Reviews, 2014, 88:14-54. [20] MURARI M K, OWEN L A, DORTCH J M, et al. Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan-Tibetan orogen[J]. Quaternary Science Reviews, 2014, 88:159-182. [21] TRABUCCO A, ZOMER R J. Global aridity and PET database[EB/OL].[2019-10-25]. http://www.cgiar-csi.org/data/global-aridity-and-pet-database. [22] 吴世勇, 申满斌. 雅砻江流域水电开发中的关键技术问题及研究进展[J]. 水利学报, 2007(S1):15-19. WU S Y, SHEN M B. The key technical issue and its research advance in Yalong River hydropower development[J]. Journal of Hydraulic Engineering, 2007(S1):15-19. (in Chinese) [23] 李常斌, 王帅兵, 杨林山, 等. 1951-2010年洮河流域水文气象要素变化的时空特征[J]. 冰川冻土, 2013, 35(5):1259-1266. LI C B, WANG S B, YANG L S, et al. Spatial and temporal variation of main hydrologic meteorological elements in the Taohe River basin from 1951 to 2010[J]. Journal of Glaciology and Geocryology, 2013, 35(5):1259-1266. (in Chinese) [24] 胡兴林, 畅俊杰, 姚志宗, 等. 干旱半干旱地区水文预报模型研究及应用——以洮河流域为例[J]. 冰川冻土, 2003, 25(4):409-413. HU X L, CHANG J J, Yao Z Z, et al. Study and application of hydrology forecast model in the arid and semi-arid regions[J]. Journal of Glaciology and Geocryology, 2003, 25(4):409-413. (in Chinese) [25] 彭定志, 徐宗学, 巩同梁. 雅鲁藏布江拉萨河流域水文模型应用研究[J]. 北京师范大学学报(自然科学版), 2008, 44(1):92-95. PENG D Z, XU Z X, GONG T L. Application of hydrological models to the Lhasa River basin of the Yalu Zangbu River[J]. Journal of Beijing Normal University (Natural Science), 2008, 44(1):92-95. (in Chinese) [26] BAI R, LI T J, HUANG Y F, et al. An efficient and comprehensive method for drainage network extraction from DEM with billions of pixels using a size-balanced binary search tree[J]. Geomorphology, 2015, 238:56-67. [27] HORTON R E. Erosional development of streams and their Drainage Basins:Hydrophysical approach to quantitative morphology[J]. Geological Society of America Bulletin, 1945, 56(3):275-370. [28] FLINT J J. Stream gradient as a function of order, magnitude, and discharge[J]. Water Resource Research, 1974, 10(5):969-973. [29] YANG R, WILLETT S D, GOREN L. In situ low-relief landscape formation as a result of river network disruption[J]. Nature, 2015, 520(7548):526-529. [30] ABRAHAMS A D. Channel networks:A geomorphological perspective[J]. Water Resources Research, 1984, 20(2):161-188. [31] DODDS P S, ROTHMAN D H. Unified view of scaling laws for river networks[J]. Physical Review E, 1999, 59(5):4865-4877. [32] 李勇, 曹叔尤, 周荣军, 等. 晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束[J]. 地质学报, 2005, 79(1):28-37. LI Y, CAO S Y, ZHOU R J, et al. Late Cenozoic Minjiang incision rate and its constraint on the uplift of the eastern margin of the Tibetan Plateau[J]. Acta Geologica Sinica, 2005, 79(1):28-37. (in Chinese) [33] CLARK M K, ROYDEN L H. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8):703-706. [34] OUIMET W, WHIPPLE K, ROYDEN L, et al. Regional incision of the eastern margin of the Tibetan Plateau[J]. Lithosphere, 2010, 2(1):50-63. [35] WHIPPLE K X, TUCKER G E. Dynamics of the stream-power river incision model:Implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research, 1999, 104(B8):17661-17674. [36] WANG E, KIRBY E, FURLONG K P, et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 2012, 5(9):640-645. [37] TIAN Y T, KOHN B P, HU S B, et al. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau:Implications for crustal dynamics[J]. Geophysical Research Letters, 2015, 42(1):29-35.