Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (11): 951-957    DOI: 10.16511/j.cnki.qhdxxb.2020.25.030
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
青藏高原典型流域河网特性及控制因素
李敏慧, 陈毅, 吴保生
清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Analysis of features and factors controlling typical drainage networks in the Tibetan Plateau
LI Minhui, CHEN Yi, WU Baosheng
State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(5152 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 青藏高原地区由于地质构造运动活跃、高原气候独特,导致河网水系具有一定的空间差异性与发育程度多样的特点。该文以洮河、雅砻江和拉萨河3个典型流域为代表,对青藏高原的河网水系特性及控制因素进行了研究。基于90 m分辨率的SRTM DEM数据,利用DEMRiver程序提取了青藏高原3个子流域的河网与干流纵剖面。计算得到雅砻江、洮河和拉萨河流域分支比分别为4.46、5.00和4.37,河长比分别为2.35、2.71和2.30;洮河和拉萨河的纵剖面凹度值分别为-0.129和-0.082,呈下凹形态,雅砻江的纵剖面凹度值为0.009,呈上凸形态。对比原始定义和斜率法得到的Horton比,结合流域气候条件和构造活动,分析了不同级别河流特性的控制因素。结果表明,气候作用在青藏高原河网低级别河流的平面结构及纵剖面形态中得到了较好地体现;而雅砻江流域构造运动强烈,区域河网被破坏,河网试图通过河流袭夺以恢复平衡状态,构造运动控制着该区域高级别河网的平面结构及纵剖面的演变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李敏慧
陈毅
吴保生
关键词 青藏高原河网特性河流纵剖面控制因素构造运动    
Abstract:The active tectonic movements and the unique climate on the Tibetan Plateau cause significant spatial differences in the drainage network on the Plateau. The drainage network and the longitudinal profiles of the main streams of three river basins were extracted from 90 m resolution SRTM DEM using DEMRiver to study the factors controlling the drainage network in the Tibetan Plateau. The Yalong River had a bifurcation ratio of 4.46 and a length ratio of 2.35, the Tao River had a bifurcation ratio of 5.00 and a length ratio of 2.71 and the Lasa River had a bifurcation ratio of 4.37 and a length ratio of 2.30. The normalized concavity index for the Tao River was -0.129, that for the Lasa River was -0.082 and that for the Yalong River was 0.009, indicating that the profiles of the first two rivers are concave-up while that of the Yalong River is convex-up. The Horton ratio obtained using the original definition and the fitting method and the climatic conditions and tectonic activities in the basin show that the climate effect is well reflected in the structure of the low-level river network. Strong tectonic movement destroyed the network of the Yalong River Basin with the network now maintaining balance through river capture, indicating that the tectonic movement controls the structure of the high-level river network.
Key wordsTibetan Plateau    features of drainage network    river profile    controlling factors    tectonic activity
收稿日期: 2019-12-05      出版日期: 2020-08-31
基金资助:吴保生,教授,E-mail:baosheng@tsinghua.edu.cn
引用本文:   
李敏慧, 陈毅, 吴保生. 青藏高原典型流域河网特性及控制因素[J]. 清华大学学报(自然科学版), 2020, 60(11): 951-957.
LI Minhui, CHEN Yi, WU Baosheng. Analysis of features and factors controlling typical drainage networks in the Tibetan Plateau. Journal of Tsinghua University(Science and Technology), 2020, 60(11): 951-957.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.030  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I11/951
  
  
  
  
  
  
  
[1] 许炯心, 李炳元, 杨小平, 等. 中国地貌与第四纪研究的近今进展与未来展望[J]. 地理学报, 2009, 64(11):1375-1393. XU J X, LI B Y, YANG X P, et al. Recent progress in geomorphology and quaternary geology in China and some perspectives[J]. Acta Geographica Sinica, 2009, 64(11):1375-1393. (in Chinese)
[2] PERRON J T, RICHARDSON P W, FERRIER K L, et al. The root of branching river networks[J]. Nature, 2012, 492(7427):100-103.
[3] SEYBOLD H, ROTHMAN D H, KIRCHNER J W. Climate's watermark in the geometry of stream networks[J]. Geophysical Research Letters, 2017, 44(5):2272-2280.
[4] ZANARDO S, ZALIAPIN I, FOUFOULA-GEORGIOU E. Are American rivers Tokunaga self-similar? New results on fluvial network topology and its climatic dependence[J]. Journal of Geophysical Research:Earth Surface, 2013, 118(1):166-183.
[5] TOKUNAGA E. The composition of drainage network in Toyohira river basin and valuation of Horton's first law[J]. Geophysical Bulletin of the Hokkaido University, 1966, 15:1-19.
[6] 柏睿. 大规模河网提取方法与河流结构规律[D]. 北京:清华大学, 2015. BAI R. Large scale drainage network extraction and river structure rules[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[7] GUPTA S. Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin[J]. Geology, 1997, 25(1):11-14.
[8] WALCOTT R C, SUMMERFIELD M A. Universality and variability in basin outlet spacing:Implications for the two-dimensional form of drainage basins[J]. Basin Research, 2009, 21(2):147-155.
[9] 刘乐, 王兆印, 余国安, 等. 青藏高原河网统计规律及高原抬升的影响[J]. 清华大学学报(自然科学版), 2015, 55(9):964-970. LIU L, WANG Z Y, YU G A, et al. Statistical features of the drainage network in the Qinghai-Tibet Plateau and the effect of the uplift[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(9):964-970. (in Chinese)
[10] KIRBY E, WHIPPLE K X. Expression of active tectonics in erosional landscapes[J]. Journal of Structural Geology, 2012, 44:54-75.
[11] PHILLIPS J D, LUTZ J D. Profile convexities in bedrock and alluvial streams[J]. Geomorphology, 2008, 102(3-4):554-566.
[12] ROE G H, MONTGOMERY D R, HALLET B. Effects of orographic precipitation variations on the concavity of steady-state river profiles[J]. Geology, 2002, 30(2):143-146.
[13] 王一舟, 张会平, 郑德文, 等. 非均衡河道高程剖面及其蕴含的构造活动信息[J]. 第四纪研究, 2018, 38(1):220-231. WANG Y Z, ZHANG H P, ZHENG D W, et al. River longitudinal profiles under transient state and the related tectonic signals[J]. Quaternary Sciences, 2018, 38(1):220-231. (in Chinese)
[14] 胡小飞, 潘保田, KIRBY E, 等. 河道陡峭指数所反映的祁连山北翼抬升速率的东西差异[J]. 科学通报, 2010, 55(23):2329-2338. HU X F, PAN B T, KIRBY E, et al. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, Northeast Tibetan Plateau[J]. Chinese Science Bulletin, 2010, 55(27):3205-3214. (in Chinese)
[15] WHIPPLE K X. Bedrock rivers and the geomorphology of active orogens[J]. Annual Review of Earth and Planetary Sciences, 2004, 32:151-185.
[16] ZAPROWSKI B J, PAZZAGLIA F J, EVENSON E B. Climatic influences on profile concavity and river incision[J]. Journal of Geophysical Research, 2005, 110(F3):F03004.
[17] CHEN S A, MICHAELIDES K, GRIEVE S W D, et al. Aridity is expressed in river topography globally[J]. Nature, 2019, 573(7775):573-577.
[18] 中国地质科学院成都地质矿产研究所. 青藏高原及邻区地质图1:1500000[M]. 成都:地质出版社, 2004. Chengdu Institute of Geological and Mineral Resources, China Geology Survey. Geological map of Qinghai-Xizang (Tibet) and adjacent areas[M]. Chengdu:Geological Press, 2004. (in Chinese)
[19] OWEN L A, DORTCH J M. Nature and timing of quaternary glaciation in the Himalayan-Tibetan orogen[J]. Quaternary Science Reviews, 2014, 88:14-54.
[20] MURARI M K, OWEN L A, DORTCH J M, et al. Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan-Tibetan orogen[J]. Quaternary Science Reviews, 2014, 88:159-182.
[21] TRABUCCO A, ZOMER R J. Global aridity and PET database[EB/OL].[2019-10-25]. http://www.cgiar-csi.org/data/global-aridity-and-pet-database.
[22] 吴世勇, 申满斌. 雅砻江流域水电开发中的关键技术问题及研究进展[J]. 水利学报, 2007(S1):15-19. WU S Y, SHEN M B. The key technical issue and its research advance in Yalong River hydropower development[J]. Journal of Hydraulic Engineering, 2007(S1):15-19. (in Chinese)
[23] 李常斌, 王帅兵, 杨林山, 等. 1951-2010年洮河流域水文气象要素变化的时空特征[J]. 冰川冻土, 2013, 35(5):1259-1266. LI C B, WANG S B, YANG L S, et al. Spatial and temporal variation of main hydrologic meteorological elements in the Taohe River basin from 1951 to 2010[J]. Journal of Glaciology and Geocryology, 2013, 35(5):1259-1266. (in Chinese)
[24] 胡兴林, 畅俊杰, 姚志宗, 等. 干旱半干旱地区水文预报模型研究及应用——以洮河流域为例[J]. 冰川冻土, 2003, 25(4):409-413. HU X L, CHANG J J, Yao Z Z, et al. Study and application of hydrology forecast model in the arid and semi-arid regions[J]. Journal of Glaciology and Geocryology, 2003, 25(4):409-413. (in Chinese)
[25] 彭定志, 徐宗学, 巩同梁. 雅鲁藏布江拉萨河流域水文模型应用研究[J]. 北京师范大学学报(自然科学版), 2008, 44(1):92-95. PENG D Z, XU Z X, GONG T L. Application of hydrological models to the Lhasa River basin of the Yalu Zangbu River[J]. Journal of Beijing Normal University (Natural Science), 2008, 44(1):92-95. (in Chinese)
[26] BAI R, LI T J, HUANG Y F, et al. An efficient and comprehensive method for drainage network extraction from DEM with billions of pixels using a size-balanced binary search tree[J]. Geomorphology, 2015, 238:56-67.
[27] HORTON R E. Erosional development of streams and their Drainage Basins:Hydrophysical approach to quantitative morphology[J]. Geological Society of America Bulletin, 1945, 56(3):275-370.
[28] FLINT J J. Stream gradient as a function of order, magnitude, and discharge[J]. Water Resource Research, 1974, 10(5):969-973.
[29] YANG R, WILLETT S D, GOREN L. In situ low-relief landscape formation as a result of river network disruption[J]. Nature, 2015, 520(7548):526-529.
[30] ABRAHAMS A D. Channel networks:A geomorphological perspective[J]. Water Resources Research, 1984, 20(2):161-188.
[31] DODDS P S, ROTHMAN D H. Unified view of scaling laws for river networks[J]. Physical Review E, 1999, 59(5):4865-4877.
[32] 李勇, 曹叔尤, 周荣军, 等. 晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束[J]. 地质学报, 2005, 79(1):28-37. LI Y, CAO S Y, ZHOU R J, et al. Late Cenozoic Minjiang incision rate and its constraint on the uplift of the eastern margin of the Tibetan Plateau[J]. Acta Geologica Sinica, 2005, 79(1):28-37. (in Chinese)
[33] CLARK M K, ROYDEN L H. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8):703-706.
[34] OUIMET W, WHIPPLE K, ROYDEN L, et al. Regional incision of the eastern margin of the Tibetan Plateau[J]. Lithosphere, 2010, 2(1):50-63.
[35] WHIPPLE K X, TUCKER G E. Dynamics of the stream-power river incision model:Implications for height limits of mountain ranges, landscape response timescales, and research needs[J]. Journal of Geophysical Research, 1999, 104(B8):17661-17674.
[36] WANG E, KIRBY E, FURLONG K P, et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 2012, 5(9):640-645.
[37] TIAN Y T, KOHN B P, HU S B, et al. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau:Implications for crustal dynamics[J]. Geophysical Research Letters, 2015, 42(1):29-35.
[1] 周雄冬, 刘逸博, 徐梦珍, 张家豪, 王聪聪. 高原河流底栖动物对侧向水文连通性的响应:以泉吉河为例[J]. 清华大学学报(自然科学版), 2023, 63(5): 818-829.
[2] 陈毅, 吴保生, 李敏慧. 气候变化下的黄河源区化学风化[J]. 清华大学学报(自然科学版), 2022, 62(12): 1945-1952.
[3] 刘乐, 王兆印, 余国安, 栗腾. 青藏高原河网统计规律及高原抬升的影响[J]. 清华大学学报(自然科学版), 2015, 55(9): 964-970.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn