Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (1): 64-69    DOI: 10.16511/j.cnki.qhdxxb.2020.21.011
  工程物理 本期目录 | 过刊浏览 | 高级检索 |
水中铀的分离富集方法综述
汪向伟1,梁漫春1,*(),李钢2,何水军1
1. 清华大学 工程物理系, 公共安全研究院, 北京 100084
2. 中核高能(天津)装备有限公司, 天津 300300
Review of uranium separation and enrichment methods in water
Xiangwei WANG1,Manchun LIANG1,*(),Gang LI2,Shuijun HE1
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2. China Nuclear Energy(Tianjin) Equipment Co. Ltd., Tianjin 300300, China
全文: PDF(899 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

铀的利用是核能开发的重要内容,然而,铀及其化合物进入水体会对环境和人类健康造成严重危害,因此水中铀的分析以及处理备受关注。该文从实验室水中铀分析以及环境含铀水体治理两方面对当前水中铀分离富集主流方法进行了阐述,详细介绍了各种方法最新研究进展以及当前存在的问题。最后总结了目前水中铀分离富集方法的优缺点和应用现状,并对水中铀分离富集方法的发展趋势进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪向伟
梁漫春
李钢
何水军
关键词 水中铀分离富集环境污染    
Abstract

Uranium is the key fuel component in nuclear power plants. However, the possibility of uranium and its compounds entering the water supply can seriously harm the environment and human health. Therefore, the analysis and treatment of uranium in water have attracted much attention. This paper describes the main methods, the latest research progress and existing problems related to uranium separation and enrichment from water starting from uranium analyses of laboratory water to the treatment of uranium-bearing water in the environment. Finally, the advantages and disadvantages of uranium separation and enrichment methods in water and their applications are summarized.

Key wordsuranium in water    separation    enrichment    environmental pollution
收稿日期: 2020-03-28      出版日期: 2020-11-26
通讯作者: 梁漫春     E-mail: lmc@tsinghua.edu.cn
引用本文:   
汪向伟,梁漫春,李钢,何水军. 水中铀的分离富集方法综述[J]. 清华大学学报(自然科学版), 2021, 61(1): 64-69.
Xiangwei WANG,Manchun LIANG,Gang LI,Shuijun HE. Review of uranium separation and enrichment methods in water. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 64-69.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.21.011  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I1/64
2 ZHANG Y W , LIU Z Y , FAN F Y , et al. Extraction of uranium and thorium from nitric acid solution by TODGA in ionic liquids[J]. Separation Science and Technology, 2014. 49 (12): 1895- 1902.
doi: 10.1080/01496395.2014.903279
4 DIETZ M L , HORWITZ E P , SAJDAK L R , et al. An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media[J]. Talanta, 2001. 54 (6): 1173- 1184.
doi: 10.1016/S0039-9140(01)00390-3
5 GAUTIER C , COPPO M , CAUSSIGNAC C , et al. Zr and U determination at trace level in simulated deep groundwater by Q ICP-MS using extraction chromatography[J]. Talanta, 2013. 106, 1- 7.
doi: 10.1016/j.talanta.2012.12.019
7 EHSAN Z , SEYED R Y . Sorption and preconcentration of uranium and thorium from aqueous solutions using multi-walled carbon nanotubes decorated withmagnetic nanoparticles[J]. Radiochimica Acta, 2015. 103 (12): 835- 841.
8 REZAEE M , ASSADI Y , MILANI H M R , et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. Journal of Chromatography A, 2006. 1116 (12): 1- 9.
9 REZAEE M , KHALILIAN F . Preconcentration of uranium in water samples using dispersive liquid-liquid micro-extraction coupled with solid-phase extraction and determination with inductively coupled plasma-optical emission spectrometry[J]. Bulletin of the Chemical Society of Ethiopia, 2015. 29 (3): 367- 376.
doi: 10.4314/bcse.v29i3.4
10 BICIM T , YAMAN M . Sensitive determination of uranium in natural waters using UV-Vis spectrometry after preconcentration by ion-imprinted polymer-ternary complexes[J]. Journal of AOAC International, 2016. 99 (4): 1043- 1048.
doi: 10.5740/jaoacint.16-0088
12 TETGURE S R , CHOUDHARY B C , GAROLE D J , et al. Novel extractant impregnated resin for preconcentration and determination of uranium from environmental samples[J]. Microchemical Journal, 2017. 130, 442- 451.
doi: 10.1016/j.microc.2016.10.019
13 CHENG Y X , HE P , DONG F Q , et al. Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U(Ⅵ) from real uranium mine water[J]. Chemical Engineering Journal, 2009. 367, 198- 207.
14 BERTOLI A C , QUINT?O M C , DE ABREU H A , et al. Uranium separation from acid mine drainage using anionic resins-An experimental/theoretical investigation of its chemical speciation and the interaction mechanism[J]. Journal of Environmental Chemical Engineering, 2019. 7 (1): 102790.
15 AMPHLETT J T M , CHOI S , PARRY S A , et al. Insights on uranium uptake mechanisms by ion exchange resins with chelating functionalities:Chelation vs. anion exchange[J]. Chemical Engineering Journal, 2020. 392, 123712.
doi: 10.1016/j.cej.2019.123712
16 RUSDIANASARI , BOW Y , DEWI T , et al. Extraction of uranium from artificial liquid waste using continuous flow emulsion liquid membrane technique[J]. E3S Web of Conferences, 2018. 68, 1- 7.
17 DOLAK I . Selective adsorption of U(Ⅵ) by using U(Ⅵ)-imprinted poly-hydroxyethyl methacrylate-methacryloyl-l-histidine (p-[HEMA-(MAH)(3)]) cryogel polymer[J]. Applied Ecology and Environmental Research, 2019. 17 (2): 3165- 3178.
18 钱骏,张爽,周嫒,等.定位聚合制备表面离子印迹磁性微球用于水中铀(Ⅵ)的快速有效去除[C]//第十三届全国核化学与放射化学学术研讨会.大理,中国:中国核学会核化学与放射化学分会, 2014: 203-203.
18 QIAN J, ZHANG S, ZHOU Y, et al. Quick and effective removal of U(Ⅵ) in water by location polymerization-made surface ion imprinted magnetic microspheres[C]//The 13th National Symposium on Nuclear Chemistry and Radiochemistry. Dali, China: Branch of Nuclear Chemistry and Radiochemistry, Chinese Nuclear Association, 2014: 203-203. (in Chinese)
19 SAITO T , BROWN S , CHATTERJEE S , et al. Uranium recovery from seawater:Development of fiber adsorbents prepared via atom-transfer radical polymerization[J]. Journal of Materials Chemistry A, 2014. 2 (35): 14674- 14681.
doi: 10.1039/C4TA03276D
20 ELWAKEEL K Z , ATIA A A , GUIBAL E . Fast removal of uranium from aqueous solutions using tetraethylenepentamine modified magnetic chitosan resin[J]. Bioresource Technology, 2014. 160, 107- 114.
doi: 10.1016/j.biortech.2014.01.037
21 ORABI A , ATREES M , SALEM H . Selectivepreconcentration of uranium on chitosan stearoyl thiourea prior to its spectrophotometric determination[J]. Separation Science and Technology, 2018. 53 (14): 2267- 2283.
doi: 10.1080/01496395.2018.1445113
22 HAJIYEVA S R , BAHMANOVA F N , ALIRZAEVA E N , et al. Uranium preconcentration with a chelating sorbent based on maleic anhydride-styrene copolymer[J]. Radiochemistry, 2018. 60 (2): 195- 200.
doi: 10.1134/S1066362218020108
23 MISHRA S , DWIVEDI J , KUMARC A , et al. Studies on salophen anchored micro/meso porous activated carbon fibres for the removal and recovery of uranium[J]. RSC Advances, 2015. 5 (42): 33023- 33036.
doi: 10.1039/C5RA03168K
24 HUANG S Y , JIANG S B , PANG H W , et al. Dual functional nanocomposites of magnetic MnFe2O4 and fluorescent carbon dots for efficient U(Ⅵ) removal[J]. Chemical Engineering Journal, 2019. 368, 941- 950.
doi: 10.1016/j.cej.2019.03.015
25 CARBONI M , ABNEY C W , LIU S B , et al. Highly porous and stable metal-organic frameworks for uranium extraction[J]. Chemical Science, 2013. 4 (6): 2396- 2402.
doi: 10.1039/c3sc50230a
26 ZHANG H L , LIU W , LI A , et al. Three mechanisms in one material:Uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction[J]. Angewandte Chemie, 2019. 58 (45): 16110- 16114.
doi: 10.1002/anie.201909718
27 NOLI F , KAPASHI E , KAPNISTI M . Biosorption of uranium and cadmium using sorbents based on aloe vera wastes[J]. Journal of Environmental Chemical Engineering, 2019. 7 (2): 102985.
[1] 黄秀玲, 郑晔, 赖卫国, 朱俊俊, 华子恺. 人工韧带体外摩擦磨损测量方法[J]. 清华大学学报(自然科学版), 2024, 64(3): 432-441.
[2] 程安迪, 刘世帅, 吴雪梅, 姜晓滨, 贺高红, 王璠, 杜国栋, 肖武. 膜分离耦合电化学氢泵提氦工艺设计与优化[J]. 清华大学学报(自然科学版), 2023, 63(5): 704-713.
[3] 王啸宸, 李雪松, 任晓栋, 吴宏, 顾春伟. 多级压气机通流与CFD一体化优化设计方法[J]. 清华大学学报(自然科学版), 2022, 62(4): 774-784.
[4] 王晨沣, 傅旭东, 张玍, 龚正, 覃超. 黄土高原植被作用下黄河数字流域模型坡面侵蚀模块改进[J]. 清华大学学报(自然科学版), 2022, 62(12): 1953-1963.
[5] 严强, 徐超, 陈靖. 先进核燃料循环中基于二硫代次膦酸配体的三价镧锕分离研究:从基础化学到流程开发[J]. 清华大学学报(自然科学版), 2021, 61(4): 312-321.
[6] 侯森浩, 唐晓强, 孙海宁, 崔志伟, 王殿君. 面向航天器分离的高速索力传递特性[J]. 清华大学学报(自然科学版), 2021, 61(3): 177-182.
[7] 冯乐乐, 吴玉新, 张海, 张扬, 岳光溪. 转轮分离器风量和转速对叶片流道涡的影响[J]. 清华大学学报(自然科学版), 2020, 60(6): 493-499.
[8] 李煦, 屠明, 吴超, 国雁萌, 纳跃跃, 付强, 颜永红. 基于NMF和FCRF的单通道语音分离[J]. 清华大学学报(自然科学版), 2017, 57(1): 84-88.
[9] 祁海鹰, 黄兴亮, 胡羽, 李科, 孙新玉, 王志鹏. 龙卷旋涡的真空与能量分离特性研究[J]. 清华大学学报(自然科学版), 2016, 56(8): 893-900,907.
[10] 赵富龙, 薄涵亮, 刘潜峰. 压力变化条件下静止液滴相变模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 759-764,771.
[11] 赵富龙, 赵陈儒, 薄涵亮. 单液滴运动相变模型[J]. 清华大学学报(自然科学版), 2016, 56(11): 1213-1219.
[12] 张璜,薄涵亮. 基于Lagrange-Euler方法的多液滴运动模型[J]. 清华大学学报(自然科学版), 2015, 55(1): 105-114.
[13] 王慧,周海燕,黄勇,方婷婷. 一株高环多环芳烃降解嗜盐菌Thalassospira sp.的分离及降解特性[J]. 清华大学学报(自然科学版), 2015, 55(1): 87-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn