Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (3): 230-239    DOI: 10.16511/j.cnki.qhdxxb.2020.26.015
  航空航天与工程力学 本期目录 | 过刊浏览 | 高级检索 |
可回收火箭动力着陆段在线制导算法
宋雨1, 张伟1, 苗新元1, 张志国2, 龚胜平1
1. 清华大学 航天航空学院, 北京 100084;
2. 北京宇航系统工程研究所, 北京 100076
Onboard guidance algorithm for the powered landing phase of a reusable rocket
SONG Yu1, ZHANG Wei1, MIAO Xinyuan1, ZHANG Zhiguo2, GONG Shengping1
1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Institute of Aerospace System Engineering, Beijing 100076, China
全文: PDF(1294 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 针对火箭垂直回收精确着陆问题,该文研究了基于凸优化的在线制导算法,提出了一种制导、导航与控制一体化闭环数值仿真方法。通过无损凸化和逐次凸化方法,将火箭回收段制导问题转化为二阶锥优化问题,并结合内点法将该特定问题进行定制求解。研究了在随机大气扰动、发动机节流特性、导航系统随机偏差以及系统整体时延等多重不确定因素作用下算法的鲁棒性。通过对问题进行定制化求解,该算法具备毫秒级的收敛特性,且具有较高的算法鲁棒性。在动力学环境扰动、控制和导航系统偏差以及系统整体延时等不同扰动的组合作用下,该算法的仿真结果满足火箭回收精确软着陆的要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋雨
张伟
苗新元
张志国
龚胜平
关键词 可回收火箭精确软着陆在线制导凸优化闭环数值仿真    
Abstract:Precise soft rocket recovery landings require precise guidance, navigation, and control. A convex optimization guidance algorithm was developed for soft vertical rocket recovery landings and tested in a closed-loop simulation system. A lossless convex model was combined with successive convex iterations to transform the rocket recovery stage guidance problem into a convex optimization problem using the interior point method. The algorithm robustness was evaluated for various factors including random atmospheric disturbances, engine throttling characteristics, random navigation system deviations, and system delays. The simulations show that the onboard guidance algorithm has millisecond convergence and is very robust. Various simulations show that the closed-loop simulation results can provide precise soft landings for rocket recovery even with the combined effects of various disturbances including dynamic environments, control and navigation system deviations, and system delays.
Key wordsreusable rocket    pinpoint soft landing    onboard guidance law    convex optimization    close-loop simulation
收稿日期: 2019-12-11      出版日期: 2021-03-06
基金资助:龚胜平,副教授,E-mail:gongsp@tsinghu.edu.cn
引用本文:   
宋雨, 张伟, 苗新元, 张志国, 龚胜平. 可回收火箭动力着陆段在线制导算法[J]. 清华大学学报(自然科学版), 2021, 61(3): 230-239.
SONG Yu, ZHANG Wei, MIAO Xinyuan, ZHANG Zhiguo, GONG Shengping. Onboard guidance algorithm for the powered landing phase of a reusable rocket. Journal of Tsinghua University(Science and Technology), 2021, 61(3): 230-239.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.015  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I3/230
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] BAYLOR M. With Block 5, SpaceX to increase launch cadence and lower prices[EB/OL].[2018-07-05]. https://spaceflight.com.
[2] 李爽, 陶婷, 江秀强, 等. 月球软着陆动力下降制导控制技术综述与展望[J]. 深空探测学报, 2015, 2(2):111-119. LI S, TAO T, JIANG X Q, et al. Review and prospect of the powered descent guidance and control technologies for lunar soft landing[J]. Journal of Deep Space Exploration, 2015, 2(2):111-119. (in Chinese)
[3] 王劼, 崔乃刚, 刘暾. 通过"建立月球垂线"实现月球软着陆方法研究[J]. 导弹与航天运载技术, 2000(4):45-47. WANG J, CUI N G, LIU D. Study on lunar soft landing by the method of establishment of the lunar perpendicular[J]. Missiles and Space Vehicles, 2000(4):45-47. (in Chinese)
[4] 和兴锁, 林胜勇, 张亚峰. 月球探测器直接软着陆最优轨道设计[J]. 宇航学报, 2007, 28(2):409-413. HE X S, LIN S Y, ZHANG Y F. Optimal design of direct soft-landing trajectory of lunar prospector[J]. Journal of Astronautics, 2007, 28(2):409-413. (in Chinese)
[5] PARSLEY J. Near-optimal feedback guidance for an accurate lunar landing[D]. Tuscaloosa:University of Alabama, 2012.
[6] KERR R A. Mars exploration hang on! Curiosity is plunging onto Mars[J]. Science Magazine, 2012, 336(6088):1498-1499.
[7] 于正湜, 崔平远. 行星着陆自主导航与制导控制研究现状与趋势[J]. 深空探测学报, 2016, 3(4):345-355. YU Z S, CUI P Y. Research status and developing trend of the autonomous navigation, guidance, and control for planetary landing[J]. Journal of Deep Space Exploration, 2016, 3(4):345-355. (in Chinese)
[8] 崔平远, 朱圣英, 崔祜涛. 小天体软着陆自主光学导航与制导方法研究[J]. 宇航学报, 2009, 30(6):2159-2164, 2198. CUI P Y, ZHU S Y, CUI H T. Autonomous optical navigation and guide method for soft landing on small bodies[J]. Journal of Astronautics, 2009, 30(6):2159-2164, 2198. (in Chinese)
[9] 秦同, 朱圣英, 崔平远, 等. 行星着陆动力下降段相对视觉导航方法[J]. 宇航学报, 2019, 40(2):164-173. QIN T, ZHU S Y, CUI P Y, et al. Relative optical navigation in powered descent phase of planetary landings[J]. Journal of Astronautics, 2019, 40(2):164-173. (in Chinese)
[10] SCHARF D P, REGEHR M W, VAUGHAN G M, et al. ADAPT demonstrations of onboard large-divert guidance with a VTVL rocket[C]//2014 IEEE Aerospace Conference. Big Sky, USA:IEEE, 2014:1-18.
[11] NASA Mars 2020 Mission[Z/OL].[2019-08-21]. https://mars.nasa.gov/mars2020.
[12] 张志国, 马英, 耿光有, 等. 火箭垂直回收着陆段在线制导凸优化方法[J]. 弹道学报, 2017, 29(1):9-16. ZHANG Z G, MA Y, GENG G Y, et al. Convex optimization method used in the landing-phase on-line guidance of rocket vertical recovery[J]. Journal of Ballistics, 2017, 29(1):9-16. (in Chinese)
[13] ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1353-1366.
[14] BLACKMORE L, ACIKMESE B, SCHARF D P. Minimum-landing-error powered descent guidance for Mars landing using convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1161-1171.
[15] ACIKMESE B, CARSON J M, BLACKMORE L. Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6):2104-2113.
[16] BLACKMORE L, ACIKMESE B, CARSON J M. Lossless convexification of control constraints for a class of nonlinear optimal control problems[J]. Systems & Control Letters, 2012, 61(8):863-870.
[17] LIU X F, LU P, PAN B F. Survey of convex optimization for aerospace applications[J]. Astrodynamics, 2017, 1(1):23-40.
[18] LIU X F. Fuel-optimal rocket landing with aerodynamic controls[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Grapevine, USA:AIAA, 2017:1-15.
[19] SZMUK M, AÇIKMEŞE B. Successive convexification for 6-DoF Mars rocket powered landing with free-final-time[C]//Proceedings of 2018 AIAA Guidance, Navigation, and Control Conference. Kissimmee, USA:AIAA, 2018:617-631.
[20] SIMPLICIO P, MARCOS A, BENNANI S. A reusable launcher benchmark with advanced recovery guidance[C]//Proceedings of the 5th CEAS Conference on Guidance, Navigation & Control. Milan, Italy, 2019.
[21] MAO Y Q, SZMUK M, ACIKMESE B. A tutorial on real-time convex optimization based guidance and control for aerospace applications[C]//Proceedings of 2018 Annual American Control Conference. Milwaukee, USA:IEEE, 2018:2410-2416.
[22] YANG H W, BAI X L, BAOYIN H X. Rapid generation of time-optimal trajectories for asteroid landing via convex optimization[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(3):628-641.
[23] SZMUK M, ACIKMESE B, BERNING A W. Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. San Diego, USA:AIAA, 2016.
[24] GRANT M, BOYD S. CVX:MATLAB software for disciplined convex programming, Version 2.2[EB/OL].[2019-08-21]. http://cvxr.com/cvx
[25] SCHARF D P, ACIKMESE B, DUERI D, et al. Implementation and experimental demonstration of onboard powered-descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(2):213-229.
[26] DOMAHIDI A, CHU E, BOYD S. ECOS:An SOCP solver for embedded systems[C]//Proceedings of the European Control Conference. Zurich, Switzerland:IEEE, 2013:3071-3076.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn