Abstract:Satellite constellations require rapid maneuvering and mission planning for Earth observation missions. This paper presents a mission planning algorithm for a constellation of maneuverable satellites in circular Sun-synchronous orbits. A method is developed to determine the visibility of a single target from a single satellite. Analytical and numerical methods are combined to predict the target visibility and determine the maneuvering and return strategies. The observation mission planning towards multiple targets generates a set of maneuvering strategies with a genetic algorithm used to improve the mission planning efficiency. The numerical results show that the algorithm is accurate and improves the satellite constellation observation ability as well as the average number of observed targets.
甘岚, 龚胜平. 机动卫星星座对多目标成像任务规划[J]. 清华大学学报(自然科学版), 2021, 61(3): 240-247.
GAN Lan, GONG Shengping. Observation mission planning for maneuverable satellite constellations towards multiple targets. Journal of Tsinghua University(Science and Technology), 2021, 61(3): 240-247.
[1] 印明威, 王贤宇, 李京阳, 等. 航天器姿态机动的敏捷性评估[J]. 清华大学学报(自然科学版), 2019, 59(9):720-728.YIN M W, WANG X Y, LI J Y, et al. Assessing spacecraft agility[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(9):720-728. (in Chinese) [2] 胡松杰, 王歆, 刘林. 卫星星座与编队飞行问题综述[J]. 天文学进展, 2003(3):231-240. HU S J, WANG X, LIU L. On satellite constellation and formation[J]. Progress in Astronomy, 2003(3):231-240. (in Chinese) [3] 邓宝松, 孟志鹏, 义余江, 等. 对地观测卫星任务规划研究[J]. 计算机测量与控制, 2019, 27(11):130-139. DENG B S, MENG Z P, YI Y J, et al. Research of task scheduling of Earth observing satellites[J]. Computer Measurement & Control, 2019, 27(11):130-139. (in Chinese) [4] 鄂智博, 李俊峰. 遥感卫星对区域目标可见性的快速计算方法[J]. 清华大学学报(自然科学版), 2019, 59(9):699-704. E Z B, LI J F. Fast simulation algorithm for area target visibility using remote sensing satellites[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(9):699-704. (in Chinese) [5] 姜维, 郝会成, 李一军. 对地观测卫星任务规划问题研究述评[J]. 系统工程与电子技术, 2013, 35(9):1878-1885. JIANG W, HAO H C, LI Y J. Review of task scheduling research for the Earth observing satellites[J]. Systems Engineering and Electronics 2013, 35(9):1878-1885. (in Chinese) [6] CHU X, CHEN Y, XING L. A branch and bound algorithm for agile Earth observation satellite scheduling[J]. Discrete Dynamics in Nature and Society, 2017, 2017(1):1-15. [7] TANGPATTANAKUL P, JOZEFOWIEZ N, LOPEZ P. A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite[J]. European Journal of Operational Research, 2015, 245(2):542-554. [8] LI Y Q, XU M Q, WANG R X. Scheduling observations of agile satellites with combined genetic algorithm[C]//Proceedings of the 3rd International Conference on Natural Computation. Haikou, China:IEEE, 2007(3):29-33. [9] 何磊, 刘晓路, 陈英武, 等. 面向敏捷卫星任务规划的云层建模及处理方法[J]. 系统工程与电子技术, 2016, 28(4):852-858. HE L, LIU X L, CHEN Y W, et al. Cloud modeling and processing method for agile observing satellite mission planning[J]. Systems Engineering and Electronics, 2016, 28(4):852-858.(in Chinese) [10] NIU X, TANG H, WU L. Satellite scheduling of large areal tasks for rapid response to natural disaster using a multi-objective genetic algorithm[J]. International Journal of Disaster Risk Reduction, 2018, 28:813-825. [11] 宋彦杰, 王沛, 张忠山, 等. 面向多星任务规划问题的改进遗传算法[J]. 控制理论与应用, 2019, 36(9):1391-1397. SONG Y J, WANG P, ZHANG Z S, et al. An improved genetic algorithm for multi-satellite mission planning problem[J]. Control Theory & Applications, 2019, 36(9):1391-1397. (in Chinese) [12] LEE J, KIM H, CHUNG H, et al. Schedule optimization of imaging missions for multiple satellites and ground stations using genetic algorithm[J]. International Journal of Aeronautical and Space Sciences, 2018, 19(1):139-152. [13] ZHENG Z, GUO J, GILL E. Onboard autonomous mission replanning for multi-satellite system[J]. Acta Astronautica, 2018, 145:28-43. [14] 郝会成, 姜维, 李一军, 等. 基于Multi-Agent敏捷卫星动态任务规划问题[J]. 国防科技大学学报, 2013, 35(1):53-59. HAO H C, JIANG W, LI Y J, et al. Research on agile satellite dynamic mission planning based on multi-agent[J]. Journal of National University of Defense Technology, 2013, 35(1):53-59. (in Chinese) [15] 郭浩, 邱涤珊, 伍国华, 等. 基于改进蚁群算法的敏捷成像卫星任务调度方法[J]. 系统工程理论与实践, 2012, 32(11):2533-2539. GUO H, QIU D S, WU G H, et al. Task scheduling method for an agile imaging satellite based on improved ant colony algorithm[J]. Systems Engineering-Theory & Practice, 2012, 32(11):2533-2539. (in Chinese) [16] 孙凯, 白国庆, 陈英武, 等. 面向动作序列的敏捷卫星任务规划问题[J]. 国防科技大学学报, 2012, 34(6):141-147. SUN K, BAI G Q, CHEN Y W, et al. Action planning for agile Earth-observing satellite mission planning problem[J]. Journal of National University of Defense Technology, 2012, 34(6):141-147. (in Chinese) [17] ZHU K J, LI J F, BAOYIN H X. Satellite scheduling considering maximum observation coverage time and minimum orbital transfer fuel cost[J]. Acta Astronautica, 2010, 66(1-2):220-229 [18] 盛靖, 张刚, 耿云海. J2摄动下脉冲推力星下点轨迹调整解析算法[J]. 宇航学报, 2016, 37(8):908-916. SHENG J, ZHANG G, GENG Y H. Analytical method for ground track manipulation using impulse thrust base on J2 perturbation[J]. Journal of Astronautics, 2016, 37(8):908-916. (in Chinese) [19] XUE D, LI J F, BAOYIN H X, et al. Reachable domain for spacecraft with a single impulse[J]. Journal of Guidance Control and Dynamics, 2015, 33(3):934-942. [20] 谈小生, 葛成辉. 太阳角的计算方法及其在遥感中的应用[J]. 国土资源遥感, 1995(2):48-57. TAN X S, GE C H. A method for calculating solar angles and its application on remote sensing[J]. Remote Sensing for Land & Resources, 1995(2):48-57. (in Chinese) [21] HOLLAND J H, Adaption in natural and artificial system[M]. Michigan:Michigan University Press, 1975.