Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (4): 279-301    DOI: 10.16511/j.cnki.qhdxxb.2021.25.016
  综述 本期目录 | 过刊浏览 | 高级检索 |
海水提铀材料研究进展
刘泽宇, 谢忆, 王一凡, 胡铜洋, 叶钢, 陈靖
清华大学 核能与新能源技术研究院, 北京 100084
Recent advances in sorbent materials for uranium extraction from seawater
LIU Zeyu, XIE Yi, WANG Yifan, HU Tongyang, YE Gang, CHEN Jing
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(21156 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 铀资源是核工业发展中不可或缺的重要战略资源,发展海水提铀对于保障核能可持续发展和推进海洋资源综合利用具有重要战略意义。实现海水提铀的工程化从根本上依赖于对海水中碳酸铀酰离子具有高效富集能力且综合性能优良的吸附材料。作为海水提铀的明星材料,偕胺肟功能化聚合物因其对铀特殊的亲和力,一直受到国际国内广泛的关注。近年来,结合电化学、光化学和生物化学等交叉领域的研究进展,高吸附容量、高选择性的海水提铀材料也不断涌现。该文立足海水提铀材料的设计思路和合成策略,介绍了近年来国内外海水提铀材料的研究进展,阐明了目前海水提铀面临的关键问题和挑战,分析了海水提铀工程化的经济性,并对未来发展研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘泽宇
谢忆
王一凡
胡铜洋
叶钢
陈靖
关键词 海水提铀偕胺肟吸附材料选择性经济性    
Abstract:Uranium is an essential resource for the nuclear industry. Uranium can be extracted from seawater but better extraction techniques are needed for sustainable development of nuclear energy and efficient exploitation of ocean resources. One critical challenge is the development of sorbent materials that efficiently bind uranyl ions in the seawater with good physicochemical properties in the ocean environment. Polymeric sorbents with amidoxime functionalities, a class of remarkable sorbents for uranium extraction from seawater, have attracted extensive interest because of their specific affinity toward uranium. Recent advances in electrochemistry, photochemistry, and biological chemistry have led to the development of high adsorption capacity and high selectivity sorbent materials. This review summarizes recent research on sorbents for uranium extraction from seawater, the design principles and material synthesis strategies. This review also describes the challenges of uranium extraction from seawater and the cost-efficiency tradeoffs for this process. Finally, this review concludes with the authors' perspectives regarding future research in this area.
Key wordsuranium extraction from seawater    amidoxime    sorbents    selectivity    cost-efficiency analysis
收稿日期: 2020-12-28      出版日期: 2021-04-16
基金资助:叶钢,副教授,E-mail:yegang@mail.tsinghua.edu.cn
引用本文:   
刘泽宇, 谢忆, 王一凡, 胡铜洋, 叶钢, 陈靖. 海水提铀材料研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 279-301.
LIU Zeyu, XIE Yi, WANG Yifan, HU Tongyang, YE Gang, CHEN Jing. Recent advances in sorbent materials for uranium extraction from seawater. Journal of Tsinghua University(Science and Technology), 2021, 61(4): 279-301.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.016  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I4/279
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 王丹. 解读"十三五"发展规划, 助力核电发展[J]. 中国核电, 2017, 10(2):157-160. WANG D. Interpretation of the 13th Five-Year Development Plan in support of nuclear power development[J]. China Nuclear Power, 2017, 10(2):157-160. (in Chinese)
[2] OECD/IAEA. Uranium 2009:Resources, production and demand[M]. Paris:OECD Publishing, 2010.
[3] DAS S, OYOLA Y, MAYES R T, et al. Extracting uranium from seawater:Promising AF series adsorbents[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4110-4117.
[4] DAVIES R V, KENNEDY J, MCILROY R, et al. Extraction of uranium from sea water[J]. Nature, 1964, 203(4950):1110-1115.
[5] 李昊, 文君, 汪小琳. 中国海水提铀研究进展[J]. 科学通报, 2018, 63(5-6):481-494. LI H, WEN J, WANG X L. Research advances on extracting uranium from seawater in China[J]. Chinese Science Bulletin, 2018, 63(5-6):481-494. (in Chinese)
[6] 文君. 中国工程物理研究院海水提铀最新研究进展[J]. 中国工程物理研究院科技年报, 2015, 6:27-32. WEN J. The latest research progress of uranium extraction from seawater in China Academy of Engineering Physics[J]. Annual Report of China Academy of Engineering Physics, 2015, 6:27-32. (in Chinese)
[7] 敖浚轩, 徐晓, 李玉娜, 等. 海水提铀研究进展[J]. 辐射研究与辐射工艺学报, 2019, 37(2):1-26. AO J X, XU X, LI Y N, et al. Research progress in uranium extraction from seawater[J]. Journal of Radiation Research and Radiation Processing, 2019, 37(2):1-26. (in Chinese)
[8] XU X, ZHANG H J, AO J X, et al. 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater[J]. Energy & Environmental Science, 2019, 12(6):1979-1988.
[9] YUAN Y H, YU Q H, WEN J, et al. Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber[J]. Angewandte Chemie-International Edition, 2019, 58(34):11785-11790.
[10] ZHAO S L, YUAN Y H, YU Q H, et al. A dual-surface amidoximated halloysite nanotube for high-efficiency economical uranium extraction from seawater[J]. Angewandte Chemie-International Edition, 2019, 58(42):14979-14985.
[11] YUAN Y H, ZHAO S L, WEN J, et al. Rational design of porous nanofiber adsorbent by blow-spinning with ultrahigh uranium recovery capacity from seawater[J]. Advanced Functional Materials, 2019, 29(2):1805380.
[12] JIANG J J, YE G, WANG Z, et al. Heteroatom-doped carbon dots (CDs) as a class of metal-free photocatalysts for PET-RAFT polymerization under visible light and sunlight[J]. Angewandte Chemie-International Edition, 2018, 57(37):12037-12042.
[13] WU F C, PU N, YE G, et al. Performance and mechanism of uranium adsorption from seawater to poly (dopamine)-inspired sorbents[J]. Environmental Science & Technology, 2017, 51(8):4606-4614.
[14] ZHANG L, PU N, YU B X, et al. Skeleton engineering of homocoupled conjugated microporous polymers for highly efficient uranium capture via synergistic coordination[J]. ACS Applied Materials & Interfaces, 2020, 12(3):3688-3696.
[15] 熊洁, 文君, 胡胜, 等. 中国海水提铀研究进展[J]. 核化学与放射化学, 2015, 37(5):257-265. XIONG J, WEN J, HU S, et al. Progress in extracting uranium from seawater of China[J]. Journal of Nuclear and Radiochemistry, 2015, 37(5):257-265. (in Chinese)
[16] 李荣, 庞利娟, 张明星, 等. 辐射接枝制备聚丙烯纤维基海水提铀吸附剂[J]. 核技术, 2017, 40(5):22-28. LI R, PANG L J, ZHANG M X, et al. Preparation of polypropylene fibrous adsorbents for extraction of uranium from seawater by radiation grafting method[J]. Nuclear Techniques, 2017, 40(5):22-28. (in Chinese)
[17] 陈戏三, 何琳, 戴波. 海水提铀的先进材料与试验装置的研究进展[J]. 科技创新导报, 2017, 14(8):83-84. CHEN X S, HE L, DAI B. Research progress of extraction uranium by using advanced materials and adsorption experimental systems from sea-water[J]. Science and Technology Innovation Herald, 2017, 14(8):83-84. (in Chinese)
[18] XIE Y, CHEN C L, REN X M, et al. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation[J]. Progress in Materials Science, 2019, 103:180-234.
[19] HISAO Y, YOSHIHIRO O, FUMITO N, et al. The collection of uranium from sea water with hydrous metal oxide. Ⅱ. The mechanism of uranium adsorption on hydrous titanium (IV) oxide[J]. Bulletin of the Chemical Society of Japan, 1980, 53(1):1-5.
[20] HISAO Y, YOSHIHIRO O, FUMITO N, et al. The collection of uranium from sea water with hydrous metal oxide. IV. Physical properties and uranium adsorption of hydrous titanium (IV) oxide[J]. Bulletin of the Chemical Society of Japan, 1980, 53(11):3050-3053.
[21] OZOKWELU D, ZHANG S J, OKAFOR O, et al. Novel catalytic and separation processes based on ionic liquids[M]. Amsterdam:Elsevier, 2017.
[22] ABNEY C W, MAYES R T, SAITO T, et al. Materials for the recovery of uranium from seawater[J]. Chemical Reviews, 2017, 117(23):13935-14013.
[23] LUO W, XIAO G, TIAN F, et al. Engineering robust metal-phenolic network membranes for uranium extraction from seawater[J]. Energy & Environmental Science, 2019, 12(2):607-614.
[24] YUAN Y H, NIU B Y, YU Q H, et al. Photoinduced multiple effects to enhance uranium extraction from natural seawater by black phosphorus nanosheets[J]. Angewandte Chemie-International Edtion, 2020, 59(3):1220-1227.
[25] WANG D, SONG J A, WEN J, et al. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent[J]. Advanced Energy Materials, 2018, 8(33):1802607.
[26] TANG N, LIANG J, NIU C G, et al. Amidoxime-based materials for uranium recovery and removal[J]. Journal of Materials Chemistry A, 2020, 8(16):7588-7625.
[27] 匙芳廷, 文君, 熊洁, 等. 配体结构对铀配位性能影响的理论研究[J]. 核化学与放射化学, 2016, 38(4):238-246. CHI F T, WEN J, XIONG J, et al. Density functional theory study on selective complexation of uranyl (Ⅵ) with ligands possessing different configuration[J]. Journal of Nuclear and Radiochemistry, 2016, 38(4):238-246. (in Chinese)
[28] 苟绍华, 周艳婷, 文君, 等. 海水提铀用偕胺肟基聚合物研究进展[J]. 核化学与放射化学, 2018, 40(1):1-10. GOU S H, ZHOU Y T, WEN J, et al. Progress of amidoxime polymer for uranium extraction from seawater[J]. Journal of Nuclear and Radiochemistry, 2018, 40(1):1-10. (in Chinese)
[29] ANDREWS M B, CAHILL C L. Uranyl bearing hybrid materials:Synthesis, speciation, and solid-state structures[J]. Chemical Reviews, 2013, 113(2):1121-1136.
[30] VUKOVIC S, WATSON L A, KANG S O, et al. How amidoximate binds the uranyl cation[J]. Inorganic Chemistry, 2012, 51(6):3855-3859.
[31] CHI F T, LI P, XIONG J, et al. Density functional study of uranyl (VI) amidoxime complexes[J]. Chinese Physics B, 2012, 21(9):093102.
[32] WANG C Z, LAN J H, WU Q Y, et al. Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups[J]. Inorganic Chemistry, 2014, 53(18):9466-9476.
[33] ABNEY C W, MAYES R T, PIECHOWICZ M, et al. XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies[J]. Energy & Environmental Science, 2016, 9(2):448-453.
[34] WITTE E G, SCHWOCHAU K S, HENKEL G, et al. Uranyl complexes of acetamidoxime and benzamidoxime. Preparation, characterization, and crystal structure[J]. Inorganica Chimica Acta, 1984, 94(6):323-331.
[35] KATRAGADDA S, GESSER H D, CHOW A. The extraction of uranium by amidoximated orlon[J]. Talanta, 1997, 45(2):257-263.
[36] BARBER P S, KELLEY S P, ROGERS R D. Highly selective extraction of the uranyl ion with hydrophobic amidoxime-functionalized ionic liquids via η2 coordination[J]. RSC Advances, 2012, 2(22):8526-8530.
[37] KELLEY S P, BARBER P S, MULLINS P H K, et al. Structural clues to UO22+/VO2+ competition in seawater extraction using amidoxime-based extractants[J]. Chemical Communications, 2014, 50(83):12504-12507.
[38] YU H Z, LI C, CHEN B H, et al. Promising density functional theory methods for predicting the structures of uranyl complexes[J]. RSC Advances, 2014, 4(91):50261-50270.
[39] YANG C T, PEI S Q, CHEN B H, et al. Density functional theory investigations on the binding modes of amidoximes with uranyl ions[J]. Dalton Transactions, 2016, 45(7):3120-3129.
[40] CHATTERJEE S, BRYANTSEV V S, BROWN S, et al. Synthesis of naphthalimidedioxime ligand-containing fibers for uranium adsorption from seawater[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4161-4169.
[41] IVANOV A S, LEGGETT C J, PARKER B F, et al. Origin of the unusually strong and selective binding of vanadium by polyamidoximes in seawater[J]. Nature Communications, 2017, 8(1):1560.
[42] LEGGETT C J, PARKER B F, TEAT S J, et al. Structural and spectroscopic studies of a rare non-oxido V(V) complex crystallized from aqueous solution[J]. Chemical Science, 2016, 7(4):2775-2786.
[43] PARKER B F, HOHLOCH S, PANKHURST J R, et al. Interactions of vanadium (IV) with amidoxime ligands:Redox reactivity[J]. Dalton Transactions, 2018, 47(16):5695-5702.
[44] WANG C Z, WU Q Y, LAN J H, et al. Complexation of vanadium with amidoxime and carboxyl groups:Uncovering the competitive role of vanadium in uranium extraction from seawater[J]. Radiochimica Acta, 2017, 105(7):541-553.
[45] DAS S, LIAO W P, FLICKER BYERS M, et al. Alternative alkaline conditioning of amidoxime based adsorbent for uranium extraction from seawater[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4303-4312.
[46] WANG D L, WILHELMY S A S. Vanadium speciation and cycling in coastal waters[J]. Marine Chemistry, 2009, 117(1-4):52-58.
[47] MEHIO N, IVANOV A S, LADSHAW A P, et al. Theoretical study of oxovanadium(IV) complexation with formamidoximate:Implications for the design of uranyl-selective adsorbents[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4231-4240.
[48] XU M Y, HAN X L, HUA D B. Polyoxime-functionalized magnetic nanoparticles for uranium adsorption with high selectivity over vanadium[J]. Journal of Materials Chemistry A, 2017, 5(24):12278-12284.
[49] SUN Q, AGUILA B, EARL L D, et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration[J]. Advanced Materials, 2018, 30(20):1705479.
[50] YU B X, ZHANG L, YE G, et al. De novo synthesis of bifunctional conjugated microporous polymers for synergistic coordination mediated uranium entrapment[J]. Nano Research, 2021, 14(3):788-796.
[51] DOGNON J P. Theoretical insights into the chemical bonding in actinide complexes[J]. Coordination Chemistry Reviews, 2014, 266-267:110-122.
[52] ABNEY C W, LIU S B, LIN W B. Tuning amidoximate to enhance uranyl binding:A density functional theory study[J]. The Journal of Physical Chemistry A, 2013, 117(45):11558-11565.
[53] PARK I H, SUH J M. Preparation and uranyl ion adsorptivity of macroreticular chelating resins containing a pair of neighboring amidoxime groups in a monomeric styrene unit[J]. Die Angewandte Makromolekulare Chemie, 1996, 239(1):121-132.
[54] QIN Z, REN Y M, SHI S W, et al. The enhanced uranyl-amidoxime binding by the electron-donating substituents[J]. RSC Advances, 2017, 7(30):18639-18642.
[55] ARNOLD P L, JONES G M, PAN Q J, et al. Co-linear, double-uranyl coordination by an expanded Schiff-base polypyrrole macrocycle[J]. Dalton Transactions, 2012, 41(22):6595-6597.
[56] FRANCZYK T S, CZERWINSKI K R, RAYMOND K N. Stereognostic coordination chemistry. 1. The design and synthesis of chelators for the uranyl ion[J]. Journal of the American Chemical Society, 1992, 114(21):8138-8146.
[57] BEER S, BERRYMAN O B, AJAMI D, et al. Encapsulation of the uranyl dication[J]. Chemical Science, 2010, 1(1):43-47.
[58] SUN Q, AGUILA B, PERMAN J, et al. Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste[J]. Nature Communications, 2018, 9(1):1644.
[59] PRASAD T L, TEWARI P K, SATHIYAMOORTHY D. Parametric studies on radiation grafting of polymeric sorbents for recovery of heavy metals from seawater[J]. Industrial & Engineering Chemistry Research, 2010, 49(14):6559-6565.
[60] CHOI S H, NHO Y C. Radiation-induced graft copolymerization of binary monomer mixture containing acrylonitrile onto polyethylene films[J]. Radiation Physics and Chemistry, 2000, 58(2):157-168.
[61] CHOI S H, NHO Y C. Adsorption of UO22+ by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group[J]. Radiation Physics and Chemistry, 2000, 57(2):187-193.
[62] TAMADA M. Current status of technology for collection of uranium from seawater[M]//RAGAINI R. International Seminar on Nuclear War and Planetary Emergencies-42nd Session. Erice, Italy, 2010:243-252.
[63] XING Z, HU J T, WANG M H, et al. Properties and evaluation of amidoxime-based UHMWPE fibrous adsorbent for extraction of uranium from seawater[J]. Science China Chemistry, 2013, 56(11):1504-1509.
[64] HU J T, MA H J, XING Z, et al. Preparation of amidoximated ultrahigh molecular weight polyethylene fiber by radiation grafting and uranium adsorption test[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4118-4124.
[65] ZHAO Y N, WANG M H, TANG Z F, et al. ESR study of free radicals in UHMW-PE fiber irradiated by gamma rays[J]. Radiation Physics and Chemistry, 2010, 79(4):429-433.
[66] WANG H L, ZHANG X, WANG N, et al. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges[J]. Science Advances, 2017, 3(6):e1603170.
[67] OMICHI H, KATAKAI A, SUGO T, et al. A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater[J]. Separation Science and Technology, 1985, 20(2-3):163-178.
[68] OMICHI H, KATAKAI A, SUGO T, et al. A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. Ⅱ. Effect of grafting of hydrophilic monomers[J]. Separation Science and Technology, 1986, 21(3):299-313.
[69] SHAO D D, WANG X L, REN X M, et al. Polyamidoxime functionalized with phosphate groups by plasma technique for effective U(VI) adsorption[J]. Journal of Industrial and Engineering Chemistry, 2018, 67:380-387.
[70] DAS S, OYOLA Y, MAYES R T, et al. Extracting uranium from seawater:Promising AI series adsorbents[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4103-4109.
[71] OYOLA Y, DAI S. High surface-area amidoxime-based polymer fibers co-grafted with various acid monomers yielding increased adsorption capacity for the extraction of uranium from seawater[J]. Dalton Transactions, 2016, 45(21):8824-8834.
[72] SAITO T, BROWN S, CHATTERJEE S, et al. Uranium recovery from seawater:Development of fiber adsorbents prepared via atom-transfer radical polymerization[J]. Journal of Materials Chemistry A, 2014, 2(35):14674-14681.
[73] WIECHERT A I, LIAO W P, HONG E, et al. Influence of hydrophilic groups and metal-ion adsorption on polymer-chain conformation of amidoxime-based uranium adsorbents[J]. Journal of Colloid and Interface Science, 2018, 524:399-408.
[74] WANG J S, MATYJASZEWSKI K. Controlled/"living" radical polymerization atom transfer radical polymerization in the presence of transition-metal complexes[J]. Journal of the American Chemical Society, 1995, 117(20):5614-5615.
[75] XIE L, WANG Y L, WANG Y, et al. Study of poly(acrylamidoxime) brushes conformation with uranium adsorption by neutron reflectivity[J]. Materials Letters, 2018, 220:47-49.
[76] BROWN S, CHATTERJEE S, LI M J, et al. Uranium adsorbent fibers prepared by atom-transfer radical polymerization from chlorinated polypropylene and polyethylene trunk fibers[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4130-4138.
[77] BROWN S, YUE Y F, KUO L J, et al. Uranium adsorbent fibers prepared by atom-transfer radical polymerization (ATRP) from poly(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4139-4148.
[78] OMICHI H, KATAKAI A, SUGO T, et al. Effect of shape and size of amidoxime-group-containing adsorbent on the recovery of uranium from seawater[J]. Separation Science and Technology, 1987, 22(4):1313-1325.
[79] OYOLA Y, JANKE C J, DAI S. Synthesis, development, and testing of high-surface-area polymer-based adsorbents for the selective recovery of uranium from seawater[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4149-4160.
[80] HUNT M A, SAITO T, BROWN R H, et al. Patterned functional carbon fibers from polyethylene[J]. Advanced Materials, 2012, 24(18):2386-2389.
[81] XU X, XU L, AO J X, et al. Ultrahigh and economical uranium extraction from seawater via interconnected open-pore architecture poly(amidoxime) fiber[J]. Journal of Materials Chemistry A, 2020, 8(42):22032-22044.
[82] TIJING L D, CHOI J S, LEE S, et al. Recent progress of membrane distillation using electrospun nanofibrous membrane[J]. Journal of Membrane Science, 2014, 453:435-462.
[83] XIE S Y, LIU X Y, ZHANG B W, et al. Electrospun nanofibrous adsorbents for uranium extraction from seawater[J]. Journal of Materials Chemistry A, 2015, 3(6):2552-2558.
[84] ZHANG B W, GUO X J, XIE S Y, et al. Synergistic nanofibrous adsorbent for uranium extraction from seawater[J]. RSC Advances, 2016, 6(85):81995-82005.
[85] ASHRAFI F, FIROUZZARE M, AHMADI S J, et al. Preparation and modification of forcespun polypropylene nanofibers for adsorption of uranium (VI) from simulated seawater[J]. Ecotoxicology and Environmental Safety, 2019, 186:109746.
[86] YUAN Y H, GUO X, FENG L J, et al. Charge balanced anti-adhesive polyacrylamidoxime hydrogel membrane for enhancing uranium extraction from seawater[J]. Chemical Engineering Journal, 2020:127878. DOI:10.1016/j.cej.2020.127878.
[87] LI Z, YU Z Q, WU Y D, et al. Self-sterilizing diblock polycation-enhanced polyamidoxime shape-stable blow-spun nanofibers for high-performance uranium capture from seawater[J]. Chemical Engineering Journal, 2020, 390:124648.
[88] XU X, YUE Y R, CAI D, et al. Aqueous solution blow spinning of seawater-stable polyamidoxime nanofibers from water-soluble precursor for uranium extraction from seawater[J]. Small Methods, 2020, 4(12):2000558.
[89] LI W T, LIU Y Y, BAI Y, et al. Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater[J]. Journal of Hazardous Materials, 2020, 395:122692.
[90] WANG Y, ZHANG Y P, LI Q, et al. Amidoximated cellulose fiber membrane for uranium extraction from simulated seawater[J]. Carbohydrate Polymers, 2020, 245:116627.
[91] YAN B J, MA C X, GAO J X, et al. An ion-crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater[J]. Advanced Materials, 2020, 32(10):1906615.
[92] MA C X, GAO J X, WANG D, et al. Sunlight polymerization of poly(amidoxime) hydrogel membrane for enhanced uranium extraction from seawater[J]. Advanced Science, 2019, 6(13):1900085.
[93] JU P H, GUO H, BAI J W, et al. Construction of gel-like swollen-layer on polyacrylonitrile surface and its swelling behavior and uranium adsorption properties[J]. Journal of Colloid and Interface Science, 2020, 576:109-118.
[94] YUAN Y H, LIU T T, XIAO J X, et al. DNA nano-pocket for ultra-selective uranyl extraction from seawater[J]. Nature Communications, 2020, 11(1):5708.
[95] YU Q H, YUAN Y H, FENG L J, et al. Spidroin-inspired, high-strength, loofah-shaped protein fiber for capturing uranium from seawater[J]. Angewandte Chemie-International Edition, 2020, 59(37):15997-16001.
[96] CHEN J, OLLIS D F, RULKENS W H, et al. Photocatalyzed deposition and concentration of soluble uranium(VI) from TiO2 suspensions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1999, 151(1-2):339-349.
[97] LU C H, ZHANG P, JIANG S J, et al. Photocatalytic reduction elimination of UO22+2 pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst[J]. Applied Catalysis B:Environmental, 2017, 200:378-385.
[98] LI P, WANG J J, WANG Y, et al. Photoconversion of U(VI) by TiO2:An efficient strategy for seawater uranium extraction[J]. Chemical Engineering Journal, 2019, 365:231-241.
[99] WANG J J, WANG Y, WANG, W, et al. Tunable mesoporous g-C3N4 nanosheets as a metal-free catalyst for enhanced visible-light-driven photocatalytic reduction of U(VI)[J]. Chemical Engineering Journal, 2020, 383:123193.
[100] LIU S, WANG Z, LU Y X, et al. Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent[J]. Applied Catalysis B:Environmental, 2021, 282:119523.
[101] RAO T P, KALA R, DANIEL S. Metal ion-imprinted polymers-Novel materials for selective recognition of inorganics[J]. Analytica Chimica Acta, 2006, 578(2):105-116.
[102] KIM J, TSOURIS C, MAYES R T, et al. Recovery of uranium from seawater:A review of current status and future research needs[J]. Separation Science and Technology, 2013, 48(3):367-387.
[103] METILDA P, GLADIS J M, VENKATESWARAN G, et al. Investigation of the role of chelating ligand in the synthesis of ion-imprinted polymeric resins on the selective enrichment of uranium(VI)[J]. Analytica Chimica Acta, 2007, 587(2):263-271.
[104] SHAMSIPUR M, FASIHI J, ASHTARI K. Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators:A selective sorbent for uranyl ion[J]. Analytical Chemistry, 2007, 79(18):7116-7123.
[105] JAMES D, VENKATESWARAN G, PRASADA RAO T. Removal of uranium from mining industry feed simulant solutions using trapped amidoxime functionality within a mesoporous imprinted polymer material[J]. Microporous and Mesoporous Materials, 2009, 119(1-3):165-170.
[106] YUAN Y, YANG Y J, MA X J, et al. Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions[J]. Advanced Materials, 2018, 30(12):1706507.
[107] ZHANG L X, YANG S, QIAN J, et al. Surface ion-imprinted polypropylene nonwoven fabric for potential uranium seawater extraction with high selectivity over vanadium[J]. Industrial & Engineering Chemistry Research, 2017, 56(7):1860-1867.
[108] AO J X, ZHANG H J, XU X, et al. A novel ion-imprinted amidoxime-functionalized UHMWPE fiber based on radiation-induced crosslinking for selective adsorption of uranium[J]. RSC Advances, 2019, 9(49):28588-28597.
[109] CHANGELA A, CHEN K, XUE Y, et al. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR[J]. Science, 2003, 301(5638):1383-1387.
[110] BANCI L, BERTINI I, CIOFI-BAFFONI S, et al. Affinity gradients drive copper to cellular destinations[J]. Nature, 2010, 465(7298):645-648.
[111] ZHOU L, BOSSCHER M, ZHANG C S, et al. A protein engineered to bind uranyl selectively and with femtomolar affinity[J]. Nature Chemistry, 2014, 6(3):236-241.
[112] ODOH S O, BONDAREVSKY G D, KARPUS J, et al. UO22+ uptake by proteins:Understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity[J]. Journal of the American Chemical Society, 2014, 136(50):17484-17494.
[113] KOU S Z, YANG Z G, SUN F. Protein hydrogel microbeads for selective uranium mining from seawater[J]. ACS Applied Materials & Interfaces, 2017, 9(3):2035-2039.
[114] YANG X Y, WEI J Y, WANG Y Q, et al. A genetically encoded protein polymer for uranyl binding and extraction based on the SpyTag-SpyCatcher chemistry[J]. ACS Synthetic Biology, 2018, 7(10):2331-2339.
[115] REDDINGTON S C, HOWARTH M. Secrets of a covalent interaction for biomaterials and biotechnology:SpyTag and SpyCatcher[J]. Current Opinion in Chemical Biology, 2015, 29:94-99.
[116] ZAKERI B, FIERER J O, CELIK E, et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin[J]. Proceedings of the National Academy of Sciences, 2012, 109(12):E690-E697.
[117] ANDERSSON M, JIA Q, ABELLA A, et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin[J]. Nature Chemical Biology, 2017, 13:262-264.
[118] JOHN S G, RUGGIERO C E, HERSMAN L E, et al. Siderophore mediated plutonium accumulation by microbacterium flavescens (JG-9)[J]. Environmental Science & Technology, 2001, 35(14):2942-2948.
[119] RENSHAW J C, HALLIDAY V, ROBSON G D, et al. Development and application of an assay for uranyl complexation by fungal metabolites, including siderophores[J]. Applied and Environmental Microbiology, 2003, 69(6):3600-3606.
[120] MULLEN L, GONG C, CZERWINSKI K. Complexation of uranium (VI) with the siderophore desferrioxamine B[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 273(3):683-688.
[121] SZIGETHY G, RAYMOND K N. Hexadentate terephthalamide(bis-hydroxypyridinone) ligands for uranyl chelation:Structural and thermodynamic consequences of ligand variation[J]. Journal of the American Chemical Society, 2011, 133(20):7942-7956.
[122] TERENCIO T, ROITHOVÁ J, BRANDÈS S, et al. A comparative IRMPD and DFT study of Fe3+ and UO22+ complexation with N-Methylacetohydroxamic acid[J]. Inorganic Chemistry, 2018, 57(3):1125-1135.
[123] GUN J, EKELTCHIK I, LEV O, et al. Bis-(hydroxyamino) triazines:Highly stable hydroxylamine- based ligands for iron(iii) cations[J]. Chemical Communications, 2005(42):5319-5321.
[124] IVANOV A S, PARKER B F, ZHANG Z C, et al. Siderophore-inspired chelator hijacks uranium from aqueous medium[J]. Nature Communications, 2019, 10(1):819.
[125] SEKO N, KATAKAI A, HASEGAWA S, et al. Aquaculture of uranium in seawater by a fabric-adsorbent submerged system[J]. Nuclear Technology, 2003, 144(2):274-278.
[126] GILL G A, KUO L J, JANKE C J, et al. The uranium from seawater program at the Pacific Northwest National Laboratory:Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4264-4277.
[127] LING C J, LIU X Y, YANG X J, et al. Uranium adsorption tests of amidoxime-based ultrahigh molecular weight polyethylene fibers in simulated seawater and natural coastal marine seawater from different locations[J]. Industrial & Engineering Chemistry Research, 2017, 56(4):1103-1111.
[128] ZHAO Y N, WANG M H, TANG Z F, et al. Radiation effects of UHMW-PE fibre on gel fraction and mechanical properties[J]. Radiation Physics and Chemistry, 2011, 80(2):274-277.
[129] WANG H L, XU L, ZHANG M X, et al. More wear-resistant and ductile UHMWPE composite prepared by the addition of radiation crosslinked UHMWPE powder[J]. Journal of Applied Polymer Science, 2017, 134(13):44643.
[130] NOBUKAWA H, TAMEHIRO M, KOBAYASHI M, et al. Development of floating type-extraction system of uranium from sea water using sea water current and wave power[J]. Journal of the Society of Naval Architects of Japan, 1989, 1989(165):281-292.
[131] ZHAO H H, LIU X Y, YU M, et al. A study on the degree of amidoximation of polyacrylonitrile fibers and its effect on their capacity to adsorb uranyl ions[J]. Industrial & Engineering Chemistry Research, 2015, 54(12):3101-3106.
[132] KANG S O, VUKOVIC S, CUSTELCEAN R, et al. Cyclic imide dioximes:Formation and hydrolytic stability[J]. Industrial & Engineering Chemistry Research, 2012, 51(19):6619-6624.
[133] PAN H B, KUO L J, WOOD J, et al. Towards understanding KOH conditioning of amidoxime-based polymer adsorbents for sequestering uranium from seawater[J]. RSC Advances, 2015, 5(122):100715-100721.
[134] SEKO N, KATAKAI A, TAMADA M, et al. Fine fibrous amidoxime adsorbent synthesized by grafting and uranium adsorption-elution cyclic test with seawater[J]. Separation Science and Technology, 2004, 39(16):3753-3767.
[135] SUZUKI T, SAITO K, SUGO T, et al. Fractional elution and determination of uranium and vanadium adsorbed on amidoxime fiber from seawater[J]. Analytical Sciences, 2000, 16(4):429-432.
[136] OMICHI H, KATAKAI A, SUGO T, et al. A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. Ⅲ. Recycle use of adsorbent[J]. Separation Science and Technology, 1986, 21(6-7):563-574.
[137] KAWAI T, SAITO K, SUGITA K, et al. Preparation of hydrophilic amidoxime fibers by cografting acrylonitrile and methacrylic acid from an optimized monomer composition[J]. Radiation Physics and Chemistry, 2000, 59(4):405-411.
[138] AO J X, YUAN Y H, XU X, et al. Trace zinc-preload for enhancement of uranium adsorption performance and antifouling property of AO-functionalized UHMWPE fiber[J]. Industrial & Engineering Chemistry Research, 2019, 58(19):8026-8034.
[139] SATILMIS B, ISIK T, DEMIR M M, et al. Amidoxime functionalized Polymers of Intrinsic Microporosity (PIM-1) electrospun ultrafine fibers for rapid removal of uranyl ions from water[J]. Applied Surface Science, 2019, 467-468:648-657.
[140] HU L, YAN X W, YAO C G, et al. Preparation of amidoximated coaxial electrospun nanofibers for uranyl uptake and their electrochemical properties[J]. Separation and Purification Technology, 2016, 171:44-51.
[141] PAN H B, KUO L J, WAI C M, et al. Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4313-4320.
[142] PAN H B, WAI C M, KUO L J, et al. Bicarbonate elution of uranium from amidoxime-based polymer adsorbents for sequestering uranium from seawater[J]. Chemistry Select, 2017, 2(13):3769-3774.
[143] PARK J, GILL G A, STRIVENS J E, et al. Effect of biofouling on the performance of amidoxime-based polymeric uranium adsorbents[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4328-4338.
[144] DAS S, PANDEY A K, ATHAWALE A A, et al. Silver nanoparticles embedded polymer sorbent for preconcentration of uranium from bio-aggressive aqueous media[J]. Journal of Hazardous Materials, 2011, 186(2-3):2051-2059.
[145] WEN J, LI Q Y, LI H, et al. Nano-TiO2 imparts amidoximated wool fibers with good antibacterial activity and adsorption capacity for uranium (VI) recovery[J]. Industrial & Engineering Chemistry Research, 2018, 57(6):1826-1833.
[146] MA H C, ZHANG F, LI Q Y, et al. Preparation of ZnO nanoparticle loaded amidoximated wool fibers as a promising antibiofouling adsorbent for uranium(VI) recovery[J]. RSC Advances, 2019, 9(32):18406-18414.
[147] ZHANG H J, ZHANG L X, HAN X L, et al. Guanidine and amidoxime cofunctionalized polypropylene nonwoven fabric for potential uranium seawater extraction with antifouling property[J]. Industrial & Engineering Chemistry Research, 2018, 57(5):1662-1670.
[148] LI H, HE N N, CHENG C, et al. Antimicrobial polymer contained adsorbent:A promising candidate with remarkable anti-biofouling ability and durability for enhanced uranium extraction from seawater[J]. Chemical Engineering Journal, 2020, 388:124273.
[149] XIN Z R, DU S S, ZHAO C Y, et al. Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components[J]. Applied Surface Science, 2016, 365:99-107.
[150] GUO X J, CHEN R R, LIU Q, et al. Superhydrophilic phosphate and amide functionalized magnetic adsorbent:A new combination of anti-biofouling and uranium extraction from seawater[J]. Environmental Science:Nano, 2018, 5(10):2346-2356.
[151] YUAN Y H, YU Q H, YANG S, et al. Ultrafast recovery of uranium from seawater by Bacillus velezensis strain UUS-1 with innate anti-biofouling activity[J]. Advanced Science, 2019, 6(18):1900961.
[152] CUI W R, LI F F, XU R H, et al. Regenerable covalent organic frameworks for photo-enhanced uranium adsorption from seawater[J]. Angewandte Chemie-International Edition, 2020, 59(40):17684-17690.
[153] KUO L J, PAN H B, WAI C M, et al. Investigations into the reusability of amidoxime-based polymeric adsorbents for seawater uranium extraction[J]. Industrial & Engineering Chemistry Research, 2017, 56(40):11603-11611.
[154] TAMADA M, SEKO N, KASAI N, et al. Cost estimation of uranium recovery from seawater with system of braid type adsorbent[J]. Transactions of the Atomic Energy Society of Japan, 2006, 5(4):358-363.
[155] SCHNEIDER E, SACHDE D. The cost of recovering uranium from seawater by a braided polymer adsorbent system [J]. Science & Global Security, 2013, 21(2): 134-163.
[156] SONG Y, WEI G Y, KOPEĆ M, et al. Copolymer-templated synthesis of nitrogen-doped mesoporous carbons for enhanced adsorption of hexavalent chromium and uranium [J]. ACS Applied Nano Materials, 2018, 1(6): 2536-2543.
[1] 林鹏翥, 娄佳慧, 李建兰, 郝勇. 光谱选择透过性对聚光太阳能热化学循环性能的影响[J]. 清华大学学报(自然科学版), 2021, 61(12): 1389-1396.
[2] 辛喆, 张小雪, 陈海亮, 邵明玺, 徐晨翔, 李升波. 节能型异质汽车队列的切换式有界稳定控制[J]. 清华大学学报(自然科学版), 2019, 59(3): 228-235.
[3] 辛喆, 余舟, 郭强强, 林庆峰, 李升波, 徐晨翔. 多交叉口工况的网联汽车最优节油驾驶策略[J]. 清华大学学报(自然科学版), 2018, 58(7): 684-692.
[4] 王振雷, 刘学彦, 王昕. 基于自适应迭代学习控制的MPC系统经济性能设计[J]. 清华大学学报(自然科学版), 2016, 56(9): 1016-1024.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn