1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; 2. Shanghai Electric Power Research Institute, Shanghai 200437, China
Abstract:With the emerging frequency security problem of power systems, the application of quick response energy storage devices to the primary frequency control is an effective measure to ensure frequency security. This paper proposes a control strategy for primary frequency regulation with the participation of a quick response energy storage. The core idea is to design a whole transfer function based on the expected frequency response of the system and to design a primary frequency control strategy of the energy storage based on the whole transfer function. The demand for energy storage capacity is minimized with the optimization of the parameter. The control strategy is beyond the frame of traditional integrated inertia control and thus has a wide universality. The proposed strategy is applied in a simplified system to minimize the maximum frequency difference with the goal of obtaining a frequency response curve without overshoot. Results of the study verify that the control strategy proposed in this paper can significantly improve the frequency response characteristics compared with the traditional integrated inertia control strategy.
贾天下, 陈磊, 闵勇, 徐飞, 熊雪君, 赵乐, 冯煜尧. 快速响应储能参与一次调频的控制策略[J]. 清华大学学报(自然科学版), 2021, 61(5): 429-436.
JIA Tianxia, CHEN Lei, MIN Yong, XU Fei, XIONG Xuejun, ZHAO Le, FENG Yuyao. Control strategy for primary frequency regulation with the participation of a quick response energy storage. Journal of Tsinghua University(Science and Technology), 2021, 61(5): 429-436.
[1] 陈雪梅, 陆超, 韩英铎. 电力系统频率问题浅析与频率特性研究综述[J]. 电力工程技术. 2020, 39(1):1-9. CHEN X M, LU C, HAN Y D. Review of power system frequency problems and frequency dynamic characteristics[J]. Electric Power Engineering Technology, 2020, 39(1):1-9. (in Chinese) [2] 张剑云, 李明节. 新能源高渗透的电力系统频率特性分析[J]. 中国电机工程学报. 2020, 40(11):3498-3507. ZHANG J Y, LI M J. Analysis of the frequency characteristic of the power systems highly penetrated by new energy generation[J]. Proceedings of the CSEE, 2020, 40(11):3498-3507. (in Chinese) [3] 文云峰, 杨伟峰, 林晓煌. 低惯量电力系统频率稳定分析与控制研究综述及展望[J]. 电力自动化设备. 2020(9):211-222. WEN Y F, YANG W F, LIN X H. Review and prospect of frequency stability analysis and control of low-inertia power systems[J]. Electric Power Automation Equipment, 2020(9):211-222. (in Chinese) [4] 张怡, 张恒旭, 李常刚, 等. 深度学习在电力系统频率分析与控制中的应用综述[J/OL]. 中国电机工程学报. DOI:10.13334/j.0258-8013.pcsee.201377. ZHANG Y, ZHANG H X, LI C G, et al. Review on deep learning applications in power system frequency analysis and control[J/OL]. Proceedings of the CSEE. DOI:10.13334/j.0258-8013.pcsee.201377. (in Chinese) [5] 林恒先, 侯凯元, 陈磊, 等. 高比例风电电力系统考虑频率安全约束的机组组合[J]. 电网技术, 2021, 45(1):1-13. LIN H X, HOU K Y, CHEN L, et al. Unit commitment of high-proportion of wind power system considering frequency safety constraints[J]. Power System Technology, 2021, 45(1):1-13. (in Chinese) [6] 陈玉和. 储能技术发展概况研究. 能源研究与信息[J]. 2012, 28(3):147-152. CHEN Y H. A survey on the development of energy storage technologies[J]. Energy Research and Information, 2012, 28(3):147-152. (in Chinese) [7] SUN M, MIN Y, CHEN L, et al. Optimal auxiliary frequency control of wind turbine generator and coordination with synchronous generator[J]. CSEE Journal of Power and Energy Systems, 2021, 7(1):78-85. [8] 张天海, 于国强, 李阳, 等. 考虑风速和负荷变化场景的风电机组下垂控制设计[J]. 南京理工大学学报, 2020, 44(5):550-559. ZHANG T H, YU G Q, LI Y, et al. Wind turbines droop control design considering wind speed and load change scenarios[J]. Journal of Nanjing University of Science and Technology, 2020, 44(5):550-559. (in Chinese) [9] 李军徽, 侯涛, 穆钢, 等. 基于权重因子和荷电状态恢复的储能系统参与一次调频策略[J]. 电力系统自动化, 2020, 44(19):63-79. LI J H, HOU T, MU G, et al, Primary frequency regulation strategy with energy storage system based on weight factors and state of charge recovery[J]. Automation of Electric Power Systems, 2020, 44(19):63-79. (in Chinese) [10] 李翠萍, 毕亮, 李军徽, 等. 辅助风电响应电网一次调频的储能VSG自适应控制策略[J]. 吉林电力, 2020, 48(4):1-6. LI C P, BI L, LI J H, el al. Auxiliary wind power response grid primary frequency modulation energy storage VSG adaptive control strategy[J]. Jilin Electric Power, 2020, 48(4):1-6. (in Chinese) [11] 施静容, 李勇, 贺悝, 等. 一种提升交直流混合微电网动态特性的综合惯量控制方法[J]. 电工技术学报, 2020, 35(2):337-345. SHI J R, LI Y, HE L, et al. A comprehensive inertia control method for improving the dynamic characteristics of hybrid AC-DC microgrid[J]. Transactions of China Electrotechnical Society, 2020, 35(2):337-345. (in Chinese) [12] 梁恺, 彭晓涛, 秦世耀, 等. 基于协同控制优化风储系统频率响应的策略研究[J/OL]. 中国电机工程学报. http://kns.cnki.net/kcms/detail/11.2107.TM.20200820.1107.002.html. LIANG K, PENG X T, QIN S Y, et al. Study on synergetic control strategy for optimizing frequency response of wind farm augmented with energy storage system[J/OL]. Proceedings of the CSEE. http://kns.cnki.net/kcms/detail/11.2107.TM.20200820.1107.002.html. (in Chinese) [13] 丁勇, 华新强, 蒋顺平, 等. 大容量电池储能系统一次调频控制策略[J]. 电力电子技术, 2020, 54(11):38-41, 46. DING Y, HUA X Q, JIANG S P, et al. A primary frequency regulation strategy of large-capacity battery energy storage system[J]. Power Electronics, 2020, 54(11):38-41, 46. (in Chinese) [14] 颜湘武, 崔森, 常文斐. 考虑储能自适应调节的双馈感应发电机一次调频控制策略[J]. 电工技术学报, 2021, 36(5):1027-1039.YAN X W, CUI S, CHANG W F. Primary frequency regulation control strategy of doubly-fed induction generator considering supercapacitor SOC feedback adaptive adjustment[J]. Transactions of China Electrotechnical Society, 2021, 36(5):1027-1039. (in Chinese)