Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (6): 610-617    DOI: 10.16511/j.cnki.qhdxxb.2020.22.027
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
基于忆阻器的近似计算方法
季宇, 张悠慧, 郑纬民
清华大学 计算机科学与技术系, 北京信息科学与技术国家研究中心, 北京 100084
Approximate computing method based on memristors
JI Yu, ZHANG Youhui, ZHENG Weimin
Beijing National Research Center for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
全文: PDF(2981 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 忆阻器是一种非易失性存储器件,目前主要有两种方法用忆阻器实现通用计算:通过忆阻器交叉开关阵列支持神经网络来逼近任意函数;用忆阻器构造基础的门电路,再进一步实现任意Boole逻辑计算。前者存在误差难以控制的问题,后者相比传统数字电路优势不显著。该文设计了一种针对忆阻器的通用近似计算范式,基于忆阻器的硬件架构通用现场可编程突触阵列(GP-FPSA),结合了两种方法的优点来实现基于忆阻器的高效且误差可控的通用近似计算。在具体设计上,充分考虑了神经网络近似能力的限制,通过万能近似器来解决直接训练神经网络误差过大且不可控的问题,并结合控制流实现了复杂函数的拆分,降低近似构造的开销,最后通过基于忆阻器的架构设计,使得通用计算能力大幅提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
季宇
张悠慧
郑纬民
关键词 近似计算神经网络万能近似器忆阻器    
Abstract:Memristors are non-volatile memory devices that are also capable of colocation computations. General-purpose computations can use memristors to approximate arbitrary functions with neural networks or can use memristors to model basic gate circuits that then perform arbitrary Boolean logic calculations. However, the use of memristors to approximate arbitrary functions does not have controllable errors and the use of memristors to model basic gate circuits is slower than conventional digital circuits. This paper presents a general-purpose approximate computing paradigm for memristors and a memristor based hardware architecture, general-purpose field programmable synapse array (GP-FPSA), that combines the advantages of these two methods for efficient general-purpose approximate computing with controllable errors. A universal approximating construction method is used to resolve the large, uncontrollable error of directly training a neural network for approximations. Then, the model control flow splits complicated functions to reduce the construction cost. The memristor-based architecture significantly improves the computational power for general-purpose computing.
Key wordsapproximate computing    neural network    universal approximator    memristor
收稿日期: 2020-06-19      出版日期: 2021-04-28
通讯作者: 张悠慧,教授,E-mail:zyh02@tsinghua.edu.cn      E-mail: zyh02@tsinghua.edu.cn
作者简介: 季宇(1993-),男,博士研究生。
引用本文:   
季宇, 张悠慧, 郑纬民. 基于忆阻器的近似计算方法[J]. 清华大学学报(自然科学版), 2021, 61(6): 610-617.
JI Yu, ZHANG Youhui, ZHENG Weimin. Approximate computing method based on memristors. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 610-617.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.027  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I6/610
  
  
  
  
  
  
  
  
[1] ANTHES G. Inexact design:Beyond fault-tolerance[J]. Communications of the ACM, 2013, 56(4):18-20.
[2] WONG H S P, LEE H Y, YU S M, et al. Metal-oxide RRAM[J]. Proceedings of the IEEE, 2012, 100(6):1951-1970.
[3] SHAFIEE A, NAG A, MURALIMANOHAR N, et al. ISAAC:A convolutional neural network accelerator with in-situ analog arithmetic in crossbars[C]//2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). Seoul, South Korea, 2016:14-26.
[4] CHI P, LI S C, XU C, et al. PRIME:A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory[C]//2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). Seoul, South Korea, 2016:27-39.
[5] JI Y, ZHANG Y Y, XIE X F, et al. FPSA:A full system stack solution for reconfigurable ReRAM-based NN accelerator architecture[C]//Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). New York, USA:ACM, 2019:733-747.
[6] ZHA Y, LI J. Liquid silicon-Monona:A reconfigurable memory-oriented computing fabric with scalable multi-context support[C]//Proceedings of the 23rd International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). New York, USA:ACM, 2018:214-228.
[7] ESMAEILZADEH H, SAMPSON A, CEZE L, et al. Neural acceleration for general-purpose approximate programs[C]//2012 45th Annual IEEE/ACM Annual International Symposium on Microarchitecture. Vancouver, Canada, 2012:449-460.
[8] PENG Z H, CHEN X Y, XU C W, et al. AXNet:Approximate computing using an end-to-end trainable neural network[C]//International Conference on Computer-Aided Design (ICCAD). San Diego, USA, 2020:1-8.
[9] LI B X, GU P, SHAN Y, et al. RRAM-based analog approximate computing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(12):1905-1917.
[10] GU P, LI B X, TANG T Q, et al. Technological exploration of RRAM crossbar array for matrix-vector multiplication[C]//The 20th Asia and South Pacific Design Automation Conference. Chiba, Japan, 2015:106-111.
[11] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5):359-366.
[12] DONG X Y, XU C, XIE Y, et al. NVSim:A circuit-level performance, energy, and area model for emerging nonvolatile memory[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, 31(7):994-1007.
[13] CONG J, XIAO B J. mrFPGA:A novel FPGA architecture with memristor-based reconfiguration[C]//2011 IEEE/ACM International Symposium on Nanoscale Architectures. San Diego, USA, 2011:1-8.
[1] 张雪芹, 刘岗, 王智能, 罗飞, 吴建华. 基于多特征融合和深度学习的微观扩散预测[J]. 清华大学学报(自然科学版), 2024, 64(4): 688-699.
[2] 张名芳, 李桂林, 吴初娜, 王力, 佟良昊. 基于轻量型空间特征编码网络的驾驶人注视区域估计算法[J]. 清华大学学报(自然科学版), 2024, 64(1): 44-54.
[3] 杨波, 邱雷, 吴书. 异质图神经网络协同过滤模型[J]. 清华大学学报(自然科学版), 2023, 63(9): 1339-1349.
[4] 付雯, 温浩, 黄俊珲, 孙镔轩, 陈嘉杰, 陈武, 冯跃, 段星光. 基于非线性动力学模型补偿的水下机械臂自适应滑模控制[J]. 清华大学学报(自然科学版), 2023, 63(7): 1068-1077.
[5] 黄贲, 康飞, 唐玉. 基于目标检测的混凝土坝裂缝实时检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1078-1086.
[6] 陈波, 张华, 陈永灿, 李永龙, 熊劲松. 基于特征增强的水工结构裂缝语义分割方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1135-1143.
[7] 代鑫, 黄弘, 汲欣愉, 王巍. 基于机器学习的城市暴雨内涝时空快速预测模型[J]. 清华大学学报(自然科学版), 2023, 63(6): 865-873.
[8] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[9] 杜晓闯, 梁漫春, 黎岢, 俞彦成, 刘欣, 汪向伟, 王汝栋, 张国杰, 付起. 基于卷积神经网络的γ放射性核素识别方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 980-986.
[10] 安健, 陈宇轩, 苏星宇, 周华, 任祝寅. 机器学习在湍流燃烧及发动机中的应用与展望[J]. 清华大学学报(自然科学版), 2023, 63(4): 462-472.
[11] 孙继昊, 宋颖, 石云姣, 赵宁波, 郑洪涛. 天然气同轴分级燃烧室污染物生成及预测[J]. 清华大学学报(自然科学版), 2023, 63(4): 649-659.
[12] 刘江帆, 葛冰, 李珊珊, 芦翔. 基于神经网络的燃烧室壁面冷效预测方法[J]. 清华大学学报(自然科学版), 2023, 63(4): 681-690.
[13] 郭世圆, 马为之, 卢瑞麟, 刘晋龙, 杨志刚, 王忠静, 张敏. 基于LSTM神经网络的复杂工况下明渠流量预测[J]. 清华大学学报(自然科学版), 2023, 63(12): 1924-1934.
[14] 邓青, 张博, 李宜豪, 周亮, 周正青, 蒋慧灵, 高扬. 基于级联CNN的疏散场景中人群数量估计模型[J]. 清华大学学报(自然科学版), 2023, 63(1): 146-152.
[15] 庄文宇, 张如九, 徐建军, 殷亮, 魏海宁, 刘耀儒. 基于IAGA-BP算法的高拱坝-坝基力学参数反演分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1302-1313.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn