Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (9): 927-935    DOI: 10.16511/j.cnki.qhdxxb.2021.22.003
  计算语言学 本期目录 | 过刊浏览 | 高级检索 |
基于多语言联合训练的汉-英-缅神经机器翻译方法
满志博, 毛存礼, 余正涛, 李训宇, 高盛祥, 朱俊国
昆明理工大学 信息工程与自动化学院, 云南省人工智能重点实验室, 昆明 650500
Chinese-English-Burmese neural machine translation based on multilingual joint training
MAN Zhibo, MAO Cunli, YU Zhengtao, LI Xunyu, GAO Shengxiang, ZHU Junguo
Yunnan Key Laboratory of Artificial Intelligence, Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
全文: PDF(1394 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 多语言神经机器翻译是解决低资源语言翻译的有效方法,现有方法通常依靠共享词表的方式解决英语、法语以及德语等相似语言之间的多语言翻译问题。缅甸语属于典型的低资源语言。汉语、英语以及缅甸语之间的语言结构差异较大。为了缓解由差异性引起的共享词表大小受限制问题,该文提出一种基于多语言联合训练的汉英缅神经机器翻译方法。在Transformer框架下将丰富的汉英平行语料与较少的汉缅、英缅语料进行联合训练,模型训练过程中分别在编码端和解码端将汉英缅映射在同一语义空间以降低汉英缅语言结构差异性对共享词表的影响,通过共享汉英语料训练参数来弥补汉缅、英缅语料缺失的问题。实验结果表明:在一对多、多对多的翻译场景下,所提方法的BLEU值比基线模型的汉英、英缅以及汉缅翻译结果有明显提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
满志博
毛存礼
余正涛
李训宇
高盛祥
朱俊国
关键词 汉语-英语-缅甸语低资源语言多语言神经机器翻译联合训练语义空间映射共享参数    
Abstract:Multilingual neural machine translation is an effective method for translations of low-resource languages that have relatively small amounts of data available to train machine translations. Existing methods usually rely on shared vocabulary for multilingual translations between similar languages such as English, French, and German. However, the Burmese language is a typical low-resource language. The language structures of Chinese, English and Burmese are also quite different. A multilingual joint training method is presented here for a Chinese-English-Burmese neural machine translation that alleviates the problem of the limited amount of shared vocabulary between these languages. The rich Chinese-English parallel corpus and the poor Chinese-Burmese and English-Burmese corpora are jointly trained using the Transformer framework. The model maps the Chinese-Burmese, Chinese-English and English-Burmese vocabulary to the same semantic space on the encoding and decoding sides to reduce the differences between the Chinese, English and Burmese language structures. The influence of the shared vocabulary compensates for the lack of Chinese-Burmese and English-Burmese data by sharing the Chinese-English corpus training parameters. Tests show that in one-to-many and many-to-many translation scenarios, this method has significantly better BLEU scores over the baseline models for Chinese-English, English-Burmese, and Chinese-Burmese translations.
Key wordsChinese-English-Burmese    low resource language    multilingual neural machine translation    joint training    semantic space mapping    shared parameters
收稿日期: 2020-11-30      出版日期: 2021-08-21
基金资助:国家自然科学基金重点项目(61732005);国家自然科学基金项目(61662041,61761026,61866019,61972186);云南省应用基础研究计划重点项目(2019FA023);云南省中青年学术和技术带头人后备人才项目(2019HB006)
通讯作者: 毛存礼,副教授,E-mail:maocunli@163.com     E-mail: maocunli@163.com
引用本文:   
满志博, 毛存礼, 余正涛, 李训宇, 高盛祥, 朱俊国. 基于多语言联合训练的汉-英-缅神经机器翻译方法[J]. 清华大学学报(自然科学版), 2021, 61(9): 927-935.
MAN Zhibo, MAO Cunli, YU Zhengtao, LI Xunyu, GAO Shengxiang, ZHU Junguo. Chinese-English-Burmese neural machine translation based on multilingual joint training. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 927-935.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.003  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I9/927
  
  
  
  
  
  
  
  
  
  
[1] AHARONI R, JOHNSON M, FIRAT O. Massively multilingual neural machine translation [C]//Proceedings of NAACL-HLT 2019. Minneapolis, USA, 2019.
[2] LEE J, CHO K, HOFMANN T. Fully character-level neural machine translation without explicit segmentation [J]. Transactions of the Association for Computational Linguistics, 2017, 5: 365-378.
[3] WANG Y N, ZHANG J J, ZHAI F F, et al. Three strategies to improve one-to-many multilingual translation [C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium, 2018: 2955-2960.
[4] WANG Y N, ZHOU L, ZHANG J J, et al. A compact and language-sensitive multilingual translation method [C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy, 2019: 1213-1223.
[5] CARUANA R. Multitask learning [J]. Machine Learning, 1997, 28(1): 41-75.
[6] 哈里旦木·阿布都克里木, 刘洋, 孙茂松. 神经机器翻译系统在维吾尔语-汉语翻译中的性能对比[J]. 清华大学学报(自然科学版), 2017, 57(8): 878-883. ABUDUKELIMU H, LIU Y, SUN M S. Performance comparison of neural machine translation systems in Uyghur-Chinese translation [J]. Journal of Tsinghua University (Science & Technology), 2017, 57(8): 878-883. (in Chinese)
[7] 李鹏, 刘洋, 孙茂松. 层次短语翻译的神经网络调序模型[J]. 清华大学学报(自然科学版), 2014, 54(12): 1529-1533. LI P, LIU Y, SUN M S. Neural reordering model for hierarchical phrase-based translations [J]. Journal of Tsinghua University (Science & Technology), 2014, 54(12): 1529-1533. (in Chinese)
[8] JOHNSON M, SCHUSTER M, LE Q V, et al. Google's multilingual neural machine translation system: Enabling zero-shot translation [J]. Transactions of the Association for Computational Linguistics, 2017, 5: 339-351.
[9] NWET K T. Building bilingual corpus based on hybrid approach for Myanmar-English machine translation [J]. International Journal of Scientific & Engineering Research, 2011, 2(9): 1-6.
[10] NWET K T, SOE K M, THEIN N L. Developing word-aligned Myanmar-English parallel corpus based on the IBM models [J]. International Journal of Computer Applications, 2011, 27(8): 12-18.
[11] KIM Y, PETROV P, PETRUSHKOV P, et al. Pivot-based transfer learning for neural machine translation between non-English languages [C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong, China, 2019.
[12] LAKEW S M, EROFEEVA A, NEGRI M, et al. Transfer learning in multilingual neural machine translation with dynamic vocabulary [Z]. arXiv: 1811.01137, 2018.
[13] DABRE R, FUJITA A, CHU C H. Exploiting multilingualism through multistage fine-tuning for low-resource neural machine translation [C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong, China, 2019: 1410-1416.
[14] FIRAT O, SANKARAN B, AL-ONAIZAN Y, et al. Zero-resource translation with multi-lingual neural machine translation [C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, USA, 2016.
[15] SACHAN D S, NEUBIG G. Parameter sharing methods for multilingual self-attentional translation models [C]//Proceedings of the Third Conference on Machine Translation (WMT), Volume I: Research Papers. Brussels, Belgium, 2018.
[16] DONG D X, WU H, HE W, et al. Multi-task learning for multiple language translation [C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing, China, 2015: 1723-1732.
[17] FIRAT O, CHO K, SANKARAN B, et al. Multi-way, multilingual neural machine translation [J]. Computer Speech & Language, 2017, 45: 236-252.
[18] ZOPH B, KNIGHT K. Multi-source neural translation [C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, USA, 2016.
[19] HA T L, NIEHUES J, WAIBEL A. Toward multilingual neural machine translation with universal encoder and decoder [Z]. arXiv: 1611.04798, 2016.
[20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates, 2017: 5998-6008.
[21] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks [C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014: 3104-3112.
[22] WIN A T. Phrase reordering translation system in Myanmar-English [C]//Ninth International Conference on Computer Applications (ICCA 2011). Yangon, Myanmar, 2011: 50-53.
[23] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space [Z]. arXiv: 1301.3781, 2013.
[24] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [Z]. arXiv: 1409.0473, 2014.
[25] PRESS O, WOLF L. Using the output embedding to improve language models [Z]. arXiv: 1608.05859, 2016.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn