Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (9): 943-952    DOI: 10.16511/j.cnki.qhdxxb.2020.26.034
  数据库 本期目录 | 过刊浏览 | 高级检索 |
dGridTopk-FCPM:一种基于模糊理论和d-网格的Top-k空间co-location模式挖掘方法
李钧毅, 王丽珍, 陈红梅
云南大学 信息学院, 昆明 650500
dGridTopk-FCPM: A top-k spatial co-location pattern mining algorithm based on fuzzy theory and d-grids
LI Junyi, WANG Lizhen, CHEN Hongmei
School of Information Science and Engineering, Yunnan University, Kunming 650500, China
全文: PDF(1680 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 空间co-location模式是指在空间中相互邻近且频繁出现的空间特征的集合。由于传统的co-location模式挖掘使用单一的距离阈值来定义空间邻近关系,忽略了距离变化对空间邻近关系带来的影响,并且最小频繁度阈值的设定对于没有数据相关专业知识的用户来说存在一定的困难。针对上述问题,该文提出了一种基于模糊理论和d-网格的邻近隶属度计算方法,该方法可以避免计算Euclid距离并且可以利用d-网格快速找到满足模糊邻近关系的极大团,然后结合Top-k思想,挖掘出频繁度最大的k个空间co-location模式。实验结果表明:该方法具有更高效的性能和更细致的计算结果,并且通过比较召回率,发现该方法得到的频繁度最大的k个模式与传统co-location模式挖掘算法得到的频繁度最大的k个模式大部分相同,说明提出的模糊度量和挖掘算法具有较大的实用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李钧毅
王丽珍
陈红梅
关键词 空间数据挖掘空间co-location模式Top-k模糊理论d-网格    
Abstract:A spatial co-location pattern is a set of spatial features that are frequently observed together in space. Traditional co-location pattern mining uses a single distance threshold to define neighbor relationships while ignoring the impact of distance differences, but the minimum prevalence threshold is difficult to determine for inexperienced users. This paper presents a method for calculating the neighborhood membership degree based on fuzzy theory and d-grids. This method does not calculate the Euclidean distance and quickly finds the maximal cliques that satisfy the fuzzy neighborhood relationship by using the d-grid. The results was then combined with the Top-k algorithm to find the k most prevalent co-location patterns. Tests show that this method is more efficient and gives more detailed results. The recall rate shows that the k most prevalent patterns obtained by this method agree well with those obtained by the traditional co-location pattern mining algorithm, which shows the effectiveness of this fuzzy measurement and mining algorithm.
Key wordsspatial data mining    spatial co-location pattern    Top-k    fuzzy theory    d-grid
收稿日期: 2020-09-08      出版日期: 2021-08-21
基金资助:国家自然科学基金项目(61966036,61662086);云南省创新团队项目(2018HC019)
通讯作者: 王丽珍,教授,E-mail:lzhwang@ynu.edu.cn     E-mail: lzhwang@ynu.edu.cn
引用本文:   
李钧毅, 王丽珍, 陈红梅. dGridTopk-FCPM:一种基于模糊理论和d-网格的Top-k空间co-location模式挖掘方法[J]. 清华大学学报(自然科学版), 2021, 61(9): 943-952.
LI Junyi, WANG Lizhen, CHEN Hongmei. dGridTopk-FCPM: A top-k spatial co-location pattern mining algorithm based on fuzzy theory and d-grids. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 943-952.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.26.034  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I9/943
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] YOO J S, SHEKHAR S, CELIK M. A join-less approach for co-location pattern mining: A summary of results[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10): 1323-1337.
[2] YOO J S, BOW M. Mining top-k closed co-location patterns[C]//Proceedings of the IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services. Fuzhou, China: IEEE, 2011: 100-105.
[3] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
[4] HUANG Y, SHEKHAR S, XIONG H. Discovering co-location patterns from spatial data sets: A general approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12): 1472-1485.
[5] BAO X G, WANG L Z. A clique-based approach for co-location pattern mining[J]. Information Sciences, 2019, 490: 244-264.
[6] TRAN V, WANG L Z. Delaunay triangulation-based spatial colocation pattern mining without distance thresholds[J]. Statistical Analysis Data Mining: The ASA Data Science Journal, 2020, 13(3): 282-304.
[7] HAN J W, PEI J, YIN Y W, et al. Mining frequent patterns without candidate generation[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Dallas, USA: ACM, 2000: 1-12.
[8] WANG L Z, BAO Y Z, LU J, et al. A new join-less approach for co-location pattern mining[C]//Proceedings of the 8th IEEE International Conference on Computer and Information Technology. Sydney, Australia: IEEE, 2008: 197-202.
[9] WANG L Z, BAO Y Z, LU Z Y. Efficient discovery of spatial co-location patterns using the iCPI-tree[J]. The Open Information Systems Journal, 2009, 3(1): 69-80.
[10] WANG L Z, ZHOU L H, LU J, et al. An order clique based approach for mining maximal co-locations[J]. Information Sciences, 2009, 179(19): 3370-3382.
[11] CHAN H K, LONG C, YAN D, et al. Fraction-score: A new support measure for co-location pattern mining[C]//35th International Conference on Data Engineering. Macao, China: IEEE, 2019: 1514-1525.
[12] ANDRZEJEWSKI W, BOINSKI P. Parallel approach to incremental co-location pattern mining[J]. Information Sciences, 2019, 496: 485-505.
[13] YU W H. Spatial co-location pattern mining for location-based services in road networks[J]. Expert Systems with Applications, 2016, 46: 324-335.
[14] MASRUR A, THAKUR G, SPARKS K, et al. Co-location pattern mining of geosocial data to characterize urban functional spaces[C]//2019 IEEE International Conference on Big Data. Los Angeles, USA: IEEE, 2019: 4099-4102.
[15] YANG P Z, WANG L Z, WANG X X, et al. An effective approach on mining co-location patterns from spatial databases with rare features[C]//20th IEEE International Conference on Mobile Data Management. Hong Kong, China: IEEE, 2019: 53-62.
[16] ANDRZEJEWSKI W, BOINSKI P. Efficient spatial co-location pattern mining on multiple GPUs[J]. Expert Systems with Applications, 2018, 93: 465-483.
[17] 欧阳志平, 王丽珍, 陈红梅. 模糊对象的空间co-location模式挖掘研究[J]. 计算机学报, 2011, 34(10): 1947-1955. OUYANG Z P, WANG L Z, CHEN H M. Research on spatial co-location pattern mining of fuzzy objects[J]. Chinese Journal of Computers, 2011, 34(10): 1947-1955. (in Chinese)
[18] OUYANG Z P, WANG L Z, WU P P. Spatial co-location pattern discovery from fuzzy objects[J]. International Journal on Artificial Intelligence Tools, 2017, 26(2): 1750003.
[19] LEI L, WANG L Z, WANG X X. Mining spatial co-location patterns by fuzzy technology[C]//Proceedings of the 2019 IEEE International Conference on Big Knowledge. Beijing, China: IEEE, 2019: 129-136.
[20] WANG M J, WANG L Z, ZHAO L H. Spatial co-location pattern mining based on fuzzy neighbor relationship[J]. Journal of Information Science and Engineering, 2019, 35(6): 1343-1363.
[21] 国家信息中心. 高德地图兴趣点POI (Point of Interest)数据[DS/OL]. (2018-11-16). https://doi.org/10.18170/DVN/WSXCNM. State Information Center. Map POI (Point of Interest) data[DS/OL]. (2018-11-16). https://doi.org/10.18170/DVN/WSXCNM. (in Chinese)
[1] 王晓旭, 王丽珍, 王家龙. 交通数据的时空并置模糊拥堵模式挖掘[J]. 清华大学学报(自然科学版), 2020, 60(8): 683-692.
[2] 郑征, 朱武祥. 模糊实物期权框架下初创企业估值[J]. 清华大学学报(自然科学版), 2019, 59(1): 73-84.
[3] 方启明,杨广文. 4R-TPUT: 结构化对等网络中的高效top-k查询算法[J]. 清华大学学报(自然科学版), 2014, 54(4): 480-484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn