Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (9): 965-971    DOI: 10.16511/j.cnki.qhdxxb.2021.22.001
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
钻铆机器人静刚度建模及优化
关立文1, 陈志雄2, 刘春3, 薛俊4
1. 清华大学 机械工程系, 北京 100084;
2. 电子科技大学 机械与电气工程学院, 成都 611173;
3. 成都飞机工业(集团)有限责任公司, 成都 610092;
4. 中国航空制造技术研究院, 北京 100025
Static stiffness modeling for optimizing drilling and riveting robots
GUAN Liwen1, CHEN Zhixiong2, LIU Chun3, XUE Jun4
1. School of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611173, China;
3. Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu 610092, China;
4. AVIC Manufacturing Technology Institute, Beijing 100025, China
全文: PDF(6668 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 机器人自动钻铆技术突破了飞机装配质量和灵活性瓶颈,在装配效率和成本上有巨大优势,已成为飞机数字化、柔性化装配发展的必然选择。目前机器人钻铆系统大多以6自由度工业串联机器人为平台,此类机器人具有结构弱刚性的固有缺点,在钻铆作业过程中承受较大的压紧力和制孔力等载荷时,机器人末端和执行器会发生一定的变形甚至颤振,严重影响钻铆精度和质量。该文以钻铆机器人为对象建立机器人静刚度模型,设计关节刚度辨识实验获取了机器人关节刚度值,进一步结合刚度性能评价指标分析了机器人工作空间范围内刚度性能分布特征,根据实际作业工况,采用粒子群算法对机器人进行位姿优化,从而增强了机器人刚度性能,对于保证系统作业稳定性和作业质量具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关立文
陈志雄
刘春
薛俊
关键词 工业机器人静刚度关节刚度辨识刚度性能粒子群算法位姿优化    
Abstract:Automatic robotic drilling and riveting greatly improve aircraft assembly quality and flexibility while reducing costs, so automatic drilling and riveting are being widely used for aircraft assembly. However, almost all robotic drilling and riveting systems are based on six degrees of freedom serial robots. However, these robots have an inherent weakness due to their poor rigidity. Large pressing and drilling forces during drilling and riveting can lead to deformation and even flutter of the robot end actuator, which seriously affect the drilling and riveting accuracy and quality. A static stiffness model of a drilling and riveting robot is developed with joint stiffness measurements to predict robot joint stiffnesses. A stiffness evaluation index is then used to characterize the robotic arm stiffness in the working space. The stiffness index can be used to optimize the robot position and posture for a specific operation using a particle swarm algorithm to improve the stiffness. This improves the system stability and quality.
Key wordsindustrial robot    static stiffness    joint stiffness identification    stiffness performance    particle swarm algorithm    pose optimization
收稿日期: 2020-10-29      出版日期: 2021-08-21
基金资助:国家重点研发计划(2017YFB1301702)
引用本文:   
关立文, 陈志雄, 刘春, 薛俊. 钻铆机器人静刚度建模及优化[J]. 清华大学学报(自然科学版), 2021, 61(9): 965-971.
GUAN Liwen, CHEN Zhixiong, LIU Chun, XUE Jun. Static stiffness modeling for optimizing drilling and riveting robots. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 965-971.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.001  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I9/965
  
  
  
  
  
  
  
  
  
  
[1] 杜兆才, 姚艳彬, 王健. 机器人钻铆系统研究现状及发展趋势[J]. 航空制造技术, 2015(4): 26-31.DU Z C, YAO Y B, WANG J. Research status and development trends of robot drilling and riveting system [J]. Aeronautical Manufacturing Technology, 2015(4): 26-31. (in Chinese)
[2] LI C J, QU R X, LI S Q, et al. Robotic three-dot force feedback to suppress surface contact slipping in robot drilling [J]. Applied Mechanics and Materials, 2013, 404: 650-656.
[3] CHEN S F, KAO I. Geometrical approach to the conservative congruence transformation (CCT) for robotic stiffness control [C]//Proceedings 2002 IEEE International Conference on Robotic and Automation. Washington DC, USA, 2002: 544-549.
[4] ABELE E, WEIGOLD M, ROTHENBÜCHER S. Modeling and identification of an industrial robot for machining applications [J]. CIRP Annals, 2007, 56(1): 387-390.
[5] 曲巍崴, 侯鹏辉, 杨根军, 等. 机器人加工系统刚度性能优化研究[J]. 航空学报, 2013, 34(12): 2823-2832. QU W W, HOU P H, YANG G J, et al. Research on the stiffness performance for robot machining systems [J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2823-2832. (in Chinese)
[6] 侯鹏辉. 机器人加工系统刚度性能优化研究[D]. 杭州: 浙江大学, 2013. HOU P H. Study on the stiffness performance optimization for robot machining system [D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
[7] 布音. 工业机器人精密制孔系统刚度特性研究[D]. 南京: 南京航空航天大学, 2017. BU Y. Analysis of stiffness properities for robotic precise drilling system [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
[8] HARTENBERG R S, DENAVIT J. Kinematic synthesis of linkages [M]. New York, USA: McGraw-Hill, 1964.
[9] KHALIL W, DOMBRE E. Compliant motion control [M]//Modeling, identification and control of robots. Amsterdam, Netherlands: Elsevier, 2004: 377-393.
[10] 蔡自兴. 机器人学[M]. 北京: 清华大学出版社, 2000. CAI Z X. Robotics [M]. Beijing: Tsinghua University Press, 2000. (in Chinese)
[11] ALICI G, SHIRINZADEH B. Enhanced stiffness modeling, identification and characterization for robot manipulators [J]. IEEE Transactions on Robotics, 2005, 21(4): 554-564.
[12] 陈首彦. 机器人的切削加工模型及其控制方法研究[D]. 广州: 华南理工大学, 2017. CHEN S Y. Modeling and control research on robotic machining process [D]. Guangzhou: South China University of Technology, 2017. (in Chinese)
[13] 陈玉山. 6R型工业机器人关节刚度辨识与实验研究[D]. 武汉: 华中科技大学, 2011. CHEN Y S. Joint stiffness identification of 6R industrial robot and experimental verification [D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese)
[14] CAMPOLO D. Cartesian stiffness for wrist joints: Analysis on the Lie group of 3D rotations and geometric approximation for experimental evaluation [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16(9): 975-986.
[15] 张永贵, 刘晨荣, 刘鹏. 6R工业机器人刚度分析[J]. 机械设计与制造, 2015(2): 257-260. ZHANG Y G, LIU C R, LIU P. 6R industrial robot stiffness analysis [J]. Machinery Design & Manufacture, 2015(2): 257-260. (in Chinese)
[16] 汪博文. 多机械臂协同加工系统静刚度建模与优化研究[D]. 上海: 上海大学, 2018. WANG B W. The research on stiffness modeling and optimization of multiple coordinated robots system [D]. Shanghai: Shanghai University, 2018. (in Chinese)
[17] 蔡蒂, 谢存禧, 张铁, 等. 基于蒙特卡洛法的喷涂机器人工作空间分析及仿真[J]. 机械设计与制造, 2009(3): 161-162. CAI D, XIE C X, ZHANG T, et al. Study on workspace analysis and simulation of 6-DOF painting robot based on Monte-Carlo method [J]. Machinery Design & Manufacture, 2009(3): 161-162. (in Chinese)
[18] 方峻. 粒子群算法及其应用研究[D]. 成都: 电子科技大学, 2006. FANG J. Research on particle swarm optimization and its application [D]. Chengdu: University of Electronic Science and Technology of China, 2006. (in Chinese)
[1] 王峰, 周宜红, 赵春菊, 周华维, 陈文夫, 谭尧升, 梁志鹏, 潘志国, 王放. 基于混合粒子群算法的特高拱坝不同材料热学参数反演分析[J]. 清华大学学报(自然科学版), 2021, 61(7): 747-755.
[2] 陈冬青, 张普含, 王华忠. 基于MIKPSO-SVM方法的工业控制系统入侵检测[J]. 清华大学学报(自然科学版), 2018, 58(4): 380-386.
[3] 崔志伟, 唐晓强, 侯森浩, 项程远. 索驱动并联机器人可控刚度特性[J]. 清华大学学报(自然科学版), 2018, 58(2): 204-211.
[4] 王国磊, 伊强, 缪东晶, 陈恳, 王力强. 面向机器人喷涂的多变量涂层厚度分布模型[J]. 清华大学学报(自然科学版), 2017, 57(3): 324-330.
[5] 罗磊, 陈恳, 杜峰坡, 马振书. 基于改进型粒子群算法的曲面匹配与位姿获取[J]. 清华大学学报(自然科学版), 2015, 55(10): 1061-1066.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn