Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (10): 1025-1038    DOI: 10.16511/j.cnki.qhdxxb.2021.22.026
  燃料电池与锂离子电池 本期目录 | 过刊浏览 | 高级检索 |
PEM燃料电池用金属双极板及其涂层的研究进展
裴普成, 李子钊, 任棚, 陈东方, 王希忠
清华大学 汽车安全与节能国家重点实验室, 北京 100084
Advances in metal bipolar plates and coatings for PEM fuel cells
PEI Pucheng, LI Zizhao, REN Peng, CHEN Dongfang, WANG Xizhong
Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(10658 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 质子交换膜(PEM)燃料电池的金属双极板在成本和加工成形方面具有优势,但是其易腐蚀的特点也影响了燃料电池的导电性和耐久性。该文从金属双极板及其涂层导电性和耐久性出发,系统总结了相关研究进展。首先根据燃料电池的市场需求,分析了应用金属双极板的优势;对金属双极板及其涂层导电性和耐久性的典型测试方法进行了讨论,并对近期文献中出现的多种涂层进行了评价,发现除合金涂层外大部分涂层能满足美国能源部2020目标;分析了影响金属双极板及其涂层导电性和耐久性的工作环境和工作状况;最后,从测试方法、涂层研究和影响因素3个方面展望了未来的研究方向。该文综述了金属双极板及其涂层的研究进展,对将其更有效、更持久地应用于燃料电池电堆中具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴普成
李子钊
任棚
陈东方
王希忠
关键词 质子交换膜燃料电池金属双极板涂层导电性耐久性    
Abstract:Metal bipolar plates for proton exchange membrane (PEM) fuel cells have price and processing advantages, but easily corrode which reduces the fuel cell electrical conductivity and durability. This paper reviews recent advances related to the electrical conductivity and durability of metal bipolar plates and their coatings for fuel cells. The review starts from the market demand for PEM fuel cell stacks and the advantages of using metal bipolar plates in PEM fuel cells. Then, the typical metal bipolar plate and coating testing methods are described. Most coatings besides alloy coatings meet the US Department of Energy 2020 target. Then, this paper describes the environmental factors and working conditions that influence the plate electrical conductivity and durability. Finally, this study identifies future research prospects related to test methods, coatings research, and key factors. This paper reviews key advances in metal bipolar plates and their coatings for improving their efficiency and durability for fuel cell stacks.
Key wordsproton exchange membrane (PEM) fuel cells    metal bipolar plates    coatings    electrical conductivity    durability
收稿日期: 2021-02-20      出版日期: 2021-08-26
基金资助:国家重点研发计划项目(2016YFB0101305);国家自然科学基金项目(21975143)
引用本文:   
裴普成, 李子钊, 任棚, 陈东方, 王希忠. PEM燃料电池用金属双极板及其涂层的研究进展[J]. 清华大学学报(自然科学版), 2021, 61(10): 1025-1038.
PEI Pucheng, LI Zizhao, REN Peng, CHEN Dongfang, WANG Xizhong. Advances in metal bipolar plates and coatings for PEM fuel cells. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1025-1038.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.026  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I10/1025
  
  
  
  
  
  
  
  
  
  
[1] FATHABADI H. Combining a proton exchange membrane fuel cell (PEMFC) stack with a Li-ion battery to supply the power needs of a hybrid electric vehicle[J]. Renewable Energy, 2019, 130:714-724.
[2] LI W, LONG R, CHEN H, et al. Willingness to pay for hydrogen fuel cell electric vehicles in China:A choice experiment analysis[J]. International Journal of Hydrogen Energy, 2020, 45(59):34346-34353.
[3] TANÇ B, ARAT H T, BALTACIOGǦLU E, et al. Overview of the next quarter century vision of hydrogen fuel cell electric vehicles[J]. International Journal of Hydrogen Energy, 2019, 44(20):10120-10128.
[4] CHEN H, PEI P, SONG M. Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells[J]. Applied Energy, 2015, 142:154-163.
[5] WHISTON M M, AZEVEDO I L, LITSTER S, et al. Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles[J]. Proceedings of the National Academy of Sciences, 2019, 116(11):4899-4904.
[6] LÆDRE S, KONGSTEIN O E, OEDEGAARD A, et al. The effect of pH and halides on the corrosion process of stainless steel bipolar plates for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(23):18537-18546.
[7] WANG J, DEREK O N. An investigation on metallic bipolar plate corrosion in simulated anode and cathode environments of PEM fuel cells using potential-pH diagrams[J]. International Journal of Electrochemical Science, 2006, 1:447-455.
[8] KUMAGAI M, MYUNG S, KUWATA S, et al. Corrosion behavior of austenitic stainless steels as a function of pH for use as bipolar plates in polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2008, 53(12):4205-4212.
[9] HERMAS A A, MORAD M S. A comparative study on the corrosion behaviour of 304 austenitic stainless steel in sulfamic and sulfuric acid solutions[J]. Corrosion Science, 2008, 50(9):2710-2717.
[10] NIKAM V V, REDDY R G. Copper alloy bipolar plates for polymer electrolyte membrane fuel cell[J]. Electrochimica Acta, 2006, 51(28):6338-6345.
[11] XU J, LI Z, XU S, et al. A nanocrystalline zirconium carbide coating as a functional corrosion-resistant barrier for polymer electrolyte membrane fuel cell application[J]. Journal of Power Sources, 2015, 297:359-369.
[12] ORSI A, KONGSTEIN O E, HAMILTON P J, et al. An investigation of the typical corrosion parameters used to test polymer electrolyte fuel cell bipolar plate coatings, with titanium nitride coated stainless steel as a case study[J]. Journal of Power Sources, 2015, 285:530-537.
[13] SCHERER J, MÜNTER D, STRÖBEL R. Influence of metallic bipolar plates on the durability of polymer electrolyte fuel cells[M]//Polymer electrolyte fuel cell durability. Berlin, Germany:Springer, 2009:243-255.
[14] WANG B, LIN R, LIU D, et al. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method[J]. International Journal of Hydrogen Energy, 2019, 44(26):13737-13743.
[15] WEI G, LU J, ZHANG Q, et al. Analyze the effects of flow mode and humidity on PEMFC performance by equivalent membrane conductivity[J]. International Journal of Energy Research, 2019, 43(9):4592-4605.
[16] YIN Y, LI R, BAI F, et al. Ionomer migration within PEMFC catalyst layers induced by humidity changes[J]. Electrochemistry Communications, 2019, 109:106590.
[17] ZHANG H, HAAS H, HU J, et al. The impact of potential cycling on PEMFC durability[J]. Journal of the Electrochemical Society, 2013, 160(8):F840.
[18] ZHANG Q, TONG Z, TONG S. Effect of cathode recirculation on high potential limitation and self-humidification of hydrogen fuel cell system[J]. Journal of Power Sources, 2020, 468:228388.
[19] AMADANE Y, MOUNIR H, KARIM E M. Numerical investigation of temperature and current density distribution on (PEM) fuel cell performance[C]//20186 th International Renewable and Sustainable Energy Conference (IRSEC). Morocco, USA, 2018:1-6.
[20] LUO L, HUANG B, CHENG Z, et al. Rapid degradation characteristics of an air-cooled PEMFC stack[J]. International Journal of Energy Research, 2020, 44(6):4784-4799.
[21] NANADEGANI F S, LAY E N, SUNDEN B. Effects of an MPL on water and thermal management in a PEMFC[J]. International Journal of Energy Research, 2019, 43(1):274-296.
[22] CHEN H, SONG Z, ZHAO X, et al. A review of durability test protocols of the proton exchange membrane fuel cells for vehicle[J]. Applied Energy, 2018, 224:289-299.
[23] PEI P, CHANG Q, TANG T. A quick evaluating method for automotive fuel cell lifetime[J]. International Journal of Hydrogen Energy, 2008, 33(14):3829-3836.
[24] PEI P, CHEN D, WU Z, et al. Nonlinear methods for evaluating and online predicting the lifetime of fuel cells[J]. Applied Energy, 2019, 254:113730.
[25] XU L, REIMER U, LI J, et al. Design of durability test protocol for vehicular fuel cell systems operated in power-follow mode based on statistical results of on-road data[J]. Journal of Power Sources, 2018, 377:59-69.
[26] REN P, PEI P, LI Y, et al. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions[J]. Progress in Energy and Combustion Science, 2020, 80:100859.
[27] LI Y, PEI P, MA Z, et al. Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell[J]. Applied Energy, 2019, 248:321-329.
[28] LI Y, PEI P, WU Z, et al. Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells[J]. Applied Energy, 2018, 224:42-51.
[29] LI Y, PEI P, WU Z, et al. Novel approach to determine cathode two-phase-flow pressure drop of proton exchange membrane fuel cell and its application on water management[J]. Applied Energy, 2017, 190:713-724.
[30] MOÇOTÉGUY P, LUDWIG B, BERETTA D, et al. Study of the impact of water management on the performance of PEMFC commercial stacks by impedance spectroscopy[J]. International Journal of Hydrogen Energy, 2020, 45(33):16724-16737.
[31] PEI P, LI Y, XU H, et al. A review on water fault diagnosis of PEMFC associated with the pressure drop[J]. Applied Energy, 2016, 173:366-385.
[32] REN P, PEI P, LI Y, et al. Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance[J]. Applied Energy, 2019, 239:785-792.
[33] WANG X R, MA Y, GAO J, et al. Review on water management methods for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2020, 46(22):12206-12229.
[34] WILBERFORCE T, EL HASSAN Z, OGUNGBEMI E, et al. A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells[J]. Renewable and Sustainable Energy Reviews, 2019, 111:236-260.
[35] HERMANN A, CHAUDHURI T, SPAGNOL P. Bipolar plates for PEM fuel cells:A review[J]. International Journal of Hydrogen Energy, 2005, 30(12):1297-1302.
[36] LEE H E, CHUNG Y S, KIM S S. Feasibility study on carbon-felt-reinforced thermoplastic composite materials for PEMFC bipolar plates[J]. Composite Structures, 2017, 180:378-385.
[37] PLANES E, FLANDIN L, ALBEROLA N. Polymer composites bipolar plates for PEMFCs[J]. Energy Procedia, 2012, 20:311-323.
[38] SONG Y, ZHANG C, LING C, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(54):29832-29847.
[39] TAHERIAN R. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell:Materials, fabrication, and material selection[J]. Journal of Power Sources, 2014, 265:370-390.
[40] TAWFIK H, HUNG Y, MAHAJAN D. Metal bipolar plates for PEM fuel cell:A review[J]. Journal of Power Sources, 2007, 163(2):755-767.
[41] WANG H, TURNER J A. Reviewing metallic PEMFC bipolar plates[J]. Fuel Cells, 2010, 10(4):510-519.
[42] BALLARED. FCgen HPS specification sheet[EB/OL].[2021-01-13]. https://www.ballard.com/about-ballard/publication_library/product-specification-sheets/fcgen-hps-spec-sheet.
[43] ElringKlinger. ElringKlinger fuel cell technology[EB/OL].[2021-01-13]. https://www.elringklinger.com/en/press/publications/e-mobility/fuel-cell-technology.
[44] Shanghai Hydrogen Propulsion Technology. SHPT PROME M3H PEM fuel cell stack[EB/OL].[2021-01-13]. https://www.shpt.com/pc/en/index.html.
[45] Powercell. Powercell fuel cell stacks[EB/OL].[2021-01-13]. https://www.powercell.se/en/products-and-services/fuel-cell-stacks/.
[46] 氢璞创能. 燃料电池电堆[EB/OL].[2021-01-13]. http://www.nowogen.com/. NOWOGEN. NOWOGEN PEM fuel cell stack[EB/OL].[2021-01-13]. http://www.nowogen.com/. (in Chinese)
[47] 新源动力股份有限公司. 燃料电池电堆[EB/OL].[2021-01-13]. http://www.fuelcell.com.cn/sunrisepower/index.html. SUNRISEPOWER. SUNRISEPOWER HYMOD-110 stack[EB/OL].[2021-01-13]. http://www.fuelcell.com.cn/sunrisepower/index.html. (in Chinese)
[48] POLLET B G, KOCHA S S, STAFFELL I. Current status of automotive fuel cells for sustainable transport[J]. Current Opinion in Electrochemistry, 2019, 16:90-95.
[49] 上海氢晨. 车用燃料电池堆[EB/OL].[2021-01-13]. http://www.shanghaiqingchen.com/index.php. H-Rise. H-Rise PEMFC stack[EB/OL].[2021-01-13]. http://www.shanghaiqingchen.com/index.php. (in Chinese)
[50] 上海神力科技有限公司. 燃料电池模块[EB/OL].[2021-01-13]. http://www.sl-power.com/index.aspx. SinoFuelCell. SinoFuelCell PEM fuel cell stack[EB/OL].[2021-01-13]. http://www.sl-power.com/index.aspx. (in Chinese)
[51] 弗尔赛能源. 电堆模块[EB/OL].[2021-01-13]. http://www.foresight-energy.cn/. FORESIGHT ENERGY. FORESIGHT ENERGY PEM fuel cell stack[EB/OL].[2021-01-13]. http://www.foresight-energy.cn/. (in Chinese)
[52] 新研氢能科技有限公司. 车用燃料电池堆[EB/OL].[2021-01-13]. http://www.innoreagen.com/index.html. INNOREAGEN. INNOREAGEN PEMFC stack[EB/OL].[2021-01-13]. http://www.innoreagen.com/index.html. (in Chinese)
[53] 国鸿氢能, 国鸿氢能燃料电池电堆[EB/OL].[2021-01-13]. http://www.sinosynergypower.com/index.aspx. SINOSYNERGY. SINOSYNERGY PEMFC stack[EB/OL].[2021-01-13]. http://www.sinosynergypower.com/index.aspx. (in Chinese)
[54] 清能股份. 燃料电池电堆[EB/OL].[2021-01-13] http://www.qingnengfc.com/. Horizon. Horizon PEM fuel cell stack[EB/OL].[2021-01-13]. http://www.qingnengfc.com/. (in Chinese)
[55] 明天氢能科技. 燃料电池电堆[EB/OL].[2021-01-13]. http://www.mth2.com/. MINGTIAN HYDROGEN ENERGY TECHNOLOGY. PEMFC stack[EB/OL].[2021-01-13]. http://www.mth2.com/. (in Chinese)
[56] KARIMI S, FRASER N, ROBERTS B, et al. A review of metallic bipolar plates for proton exchange membrane fuel cells:Materials and fabrication methods[J]. Advances in Materials Science and Engineering, 2012, 2012:828070-828092.
[57] ASRI N F, HUSAINI T, SULONG A B, et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC:A review[J]. International Journal of Hydrogen Energy, 2017, 42(14):9135-9148.
[58] BHOSALE A C, RENGASWAMY R. Interfacial contact resistance in polymer electrolyte membrane fuel cells:Recent developments and challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 115:109351-109366.
[59] LARIJANI M M, YARI M, AFSHAR A, et al. A comparison of carbon coated and uncoated 316L stainless steel for using as bipolar plates in PEMFCs[J]. Journal of Alloys and Compounds, 2011, 509(27):7400-7404.
[60] SHI J, ZHANG P, HAN Y, et al. Investigation on electrochemical behavior and surface conductivity of titanium carbide modified Ti bipolar plate of PEMFC[J]. International Journal of Hydrogen Energy, 2020, 45(16):10050-10058.
[61] WANG C, WANG S, PENG L, et al. Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications[J]. Energies, 2016, 9(8):603-642.
[62] WILBERFORCE T, IJAODOLA O, OGUNGBEMI E, et al. Technical evaluation of proton exchange membrane (PEM) fuel cell performance:A review of the effects of bipolar plates coating[J]. Renewable and Sustainable Energy Reviews, 2019, 113:109286-109301.
[63] XU M, KANG S, LU J, et al. Properties of a plasma-nitrided coating and a CrNx coating on the stainless steel bipolar plate of PEMFC[J]. Coatings, 2020, 10(2):183-197.
[64] IJAODOLA O, OGUNGBEMI E, KHATIB F N, et al. Evaluating the effect of metal bipolar plate coating on the performance of proton exchange membrane fuel cells[J]. Energies, 2018, 11(11):3203-3231.
[65] KAUSAR A. Corrosion prevention prospects of polymeric nanocomposites:A review[J]. Journal of Plastic Film & Sheeting, 2019, 35(2):181-202.
[66] LEE S, WOO S, KAKATI N, et al. Corrosion and electrical properties of carbon/ceramic multilayer coated on stainless steel bipolar plates[J]. Surface and Coatings Technology, 2016, 303:162-169.
[67] MUKHERJEE S, BATES A, LEE S C, et al. A review of the application of CNTs in PEM fuel cells[J]. International Journal of Green Energy, 2015, 12(8):787-809.
[68] WLODARCZYK R. Carbon-based materials for bipolar plates for low-temperatures PEM fuel cells:A review[J]. Functional Materials Letters, 2019, 12(2):1930001-1930020.
[69] YI P, ZHANG D, QIU D, et al. Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(13):6813-6843.
[70][DD(*2] KAHRAMAN H, CEVIK I, DU[DD(-*3]··NDAR F, et al. The corrosion resistance behaviors of metallic bipolar plates for PEMFC coated with physical vapor deposition (PVD):An experimental study[J]. Arabian Journal for Science and Engineering, 2016, 41(5):1961-1968.
[71] 陈骏, 余意. 质子交换膜燃料电池关键内阻研究进展[J]. 上海汽车, 2016(10):6-9. CHEN J, YU Y. Research progress of key internal resistance in a PEMFC[J]. Shanghai Auto, 2016(10):6-9. (in Chinese)
[72] POZIO A, ZAZA F, MASCI A, et al. Bipolar plate materials for PEMFCs:A conductivity and stability study[J]. Journal of Power Sources, 2008, 179(2):631-639.
[73] LAEDRE S, KONGSTEIN O E, OEDEGAARD A, et al. In situ and ex situ contact resistance measurements of stainless steel bipolar plates for PEM fuel cells[J]. ECS Transactions, 2013, 50(2):829-841.
[74] LÆDRE S, KONGSTEIN O E, OEDEGAARD A, et al. Measuring in situ interfacial contact resistance in a proton exchange membrane fuel cell[J]. Journal of the Electrochemical Society, 2019, 166(13):F853-F861.
[75] JIN J, LIU H, ZHENG D, et al. Effects of Mo content on the interfacial contact resistance and corrosion properties of CrN coatings on SS316L as bipolar plates in simulated PEMFCs environment[J]. International Journal of Hydrogen Energy, 2018, 43(21):10048-10060.
[76] YANG Y, NING X, TANG H, et al. Effects of passive films on corrosion resistance of uncoated SS316L bipolar plates for proton exchange membrane fuel cell application[J]. Applied Surface Science, 2014, 320:274-280.
[77] JIN J, HE Z, ZHAO X. Formation of a protective TiN layer by liquid phase plasma electrolytic nitridation on Ti-6Al-4 V bipolar plates for PEMFC[J]. International Journal of Hydrogen Energy, 2020, 45(22):12489-12500.
[78] YANG L X, LIU R J, WANG Y, et al. Growth of nanocrystalline β-Nb2N coating on 430 ferritic stainless steel bipolar plates of PEMFCs by disproportionation reaction of Nb (IV) ions in molten salt[J]. Corrosion Science, 2020, 174:108862-108872.
[79] WANG H, HOU K, LU C, et al. The study of electroplating trivalent CrC alloy coatings with different current densities on stainless steel 304 as bipolar plate of proton exchange membrane fuel cells[J]. Thin Solid Films, 2014, 570:209-214.
[80] LU J L, ABBAS N, TANG J, et al. Characterization of Ti3SiC2-coating on stainless steel bipolar plates in simulated proton exchange membrane fuel cell environments[J]. Electrochemistry Communications, 2019, 105:106490-106495.
[81] LV J, WANG Z, LIANG T, et al. Enhancing the corrosion resistance of the 2205 duplex stainless steel bipolar plates in PEMFCs environment by surface enriched molybdenum[J]. Results in Physics, 2017, 7:3459-3464.
[82] YANG L, QIN Z L, PAN H T, et al. Corrosion protection of 304 stainless steel bipolar plates of PEMFC by coating SnO2 film[J]. International Journal of Electrochemical Science, 2017, 12:10946-10957.
[83] JIN J, HU M, ZHAO X. Investigation of incorporating oxygen into TiN coating to resist high potential effects on PEMFC bipolar plates in vehicle applications[J]. International Journal of Hydrogen Energy, 2020, 45(43):23310-23326.
[84] MADADI F, REZAEIAN A, EDRIS H, et al. Improving performance in PEMFC by applying different coatings to metallic bipolar plates[J]. Materials Chemistry and Physics, 2019, 238:121911-121921.
[85] FETOHI A E, HAMEED R A, EL KHATIB K M, et al. Study of different aluminum alloy substrates coated with Ni-Co-P as metallic bipolar plates for PEM fuel cell applications[J]. International Journal of Hydrogen Energy, 2012, 37(14):10807-10817.
[86] SHANMUGHAM C, RAJENDRAN N. Poly (m-phenylenediamine)-coated 316L SS:A promising material for bipolar plates in PEMFC environment[J]. Materials and Corrosion, 2019, 70(9):1646-1656.
[87] SHANMUGHAM C, RAJENDRAN N. Corrosion resistance of poly p-phenylenediamine conducting polymer coated 316L SS bipolar plates for proton exchange membrane fuel cells[J]. Progress in Organic Coatings, 2015, 89:42-49.
[88] LI P, DING X, YANG Z, et al. Electrochemical synthesis and characterization of polyaniline-coated PEMFC metal bipolar plates with improved corrosion resistance[J]. Ionics, 2018, 24(4):1129-1137.
[89] BI F, HOU K, YI P, et al. Mechanisms of growth, properties and degradation of amorphous carbon films by closed field unbalanced magnetron sputtering on stainless steel bipolar plates for PEMFCs[J]. Applied Surface Science, 2017, 422:921-931.
[90] BI F, LI X, YI P, et al. Characteristics of amorphous carbon films to resist high potential impact in PEMFCs bipolar plates for automotive application[J]. International Journal of Hydrogen Energy, 2017, 42(20):14279-14289.
[91] LIU M, XU H, FU J, et al. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates[J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(7):844-849.
[92] OUYANG C, ZHANG X, WU M, et al. Physical and electrochemical properties of Ni-P/TiN coated Ti for bipolar plates in PEMFCs[J]. International Journal of Electrochemical Science, 2020, 15:80-93.
[93] FAN H, SHI D, WANG X, et al. Enhancing through-plane electrical conductivity by introducing Au microdots onto TiN coated metal bipolar plates of PEMFCs[J]. International Journal of Hydrogen Energy, 2020, 45(53):29442-29448.
[94] GAO P, XIE Z, WU X, et al. Development of Ti bipolar plates with carbon/PTFE/TiN composites coating for PEMFCs[J]. International Journal of Hydrogen Energy, 2018, 43(45):20947-20958.
[95] WANG Z, FENG K, LI Z, et al. Self-passivating carbon film as bipolar plate protective coating in polymer electrolyte membrane fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(13):5783-5792.
[96] YANG Y, GUO L, LIU H. The effect of temperature on corrosion behavior of SS316L in the cathode environment of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2011, 196(13):5503-5510.
[97] YANG Y, GUO L, LIU H. Influence of fluoride ions on corrosion performance of 316L stainless steel as bipolar plate material in simulated PEMFC anode environments[J]. International Journal of Hydrogen Energy, 2012, 37(2):1875-1883.
[98] MA J J, XU J, JIANG S, et al. Effects of pH value and temperature on the corrosion behavior of a Ta2N nanoceramic coating in simulated polymer electrolyte membrane fuel cell environment[J]. Ceramics International, 2016, 42(15):16833-16851.
[99] YANG Y, GUO L, LIU H. Corrosion characteristics of SS316L as bipolar plate material in PEMFC cathode environments with different acidities[J]. International Journal of Hydrogen Energy, 2011, 36(2):1654-1663.
[100] LUO H, SU H, DONG C, et al. Influence of pH on the passivation behaviour of 904L stainless steel bipolar plates for proton exchange membrane fuel cells[J]. Journal of Alloys and Compounds, 2016, 686:216-226.
[101] WŁODARCZYK R, WROŃSKA A. Effect of pH on corrosion of sintered stainless steels used for bipolar plates in polymer exchange membrane fuel cells[J]. Archives of Metallurgy and Materials, 2013, 58:89-93.
[102] TIAN R, SUN J. Effect of pH value on corrosion resistance and surface conductivity of plasma-nitrided 304L bipolar plate for PEMFC[J]. International Journal of Energy Research, 2011, 35(9):772-780.
[103] YANG Y, GUO L, LIU H. Effect of fluoride ions on corrosion behavior of SS316L in simulated proton exchange membrane fuel cell (PEMFC) cathode environments[J]. Journal of Power Sources, 2010, 195(17):5651-5659.
[104] WANG X, LUO H, LUO J. Effects of hydrogen and stress on the electrochemical and passivation behaviour of 304 stainless steel in simulated PEMFC environment[J]. Electrochimica Acta, 2019, 293:60-77.
[105] YANG Y, NING X, TANG H, et al. Effects of potential on corrosion behavior of uncoated SS316L bipolar plate in simulated PEM fuel cell cathode environment[J]. Fuel Cells, 2014, 14(6):868-875.
[106] JIN J, ZHAO X, LIU H. Durability and degradation of CrMoN coated SS316L in simulated PEMFCs environment:High potential polarization and electrochemical impedance spectroscopy (EIS)[J]. International Journal of Hydrogen Energy, 2019, 44(36):20293-20303.
[107] HINDS G, BRIGHTMAN E. Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates[J]. International Journal of Hydrogen Energy, 2015, 40(6):2785-2791.
[108] HONG Y, WANG X, CADIEN K, et al. Transient potential induced anodic dissolution of 316L stainless steel in sulfuric acid solution[J]. Journal of the Electrochemical Society, 2019, 166(11):C3355-C3365.
[1] 郭伟成, 廖元太, 张洪玉. 润滑水凝胶涂层研究进展[J]. 清华大学学报(自然科学版), 2024, 64(3): 381-392.
[2] 邱豪楠, 刘威, 唐悦, 王胡军, 郑靖. 仿生超滑涂层研究进展[J]. 清华大学学报(自然科学版), 2024, 64(3): 393-408.
[3] 应少军, 陈志同, 李建伟, 赵越. 涂层型螺栓的弱化机理分析及加工工艺改进[J]. 清华大学学报(自然科学版), 2022, 62(9): 1539-1547.
[4] 黄潇立, 陈泽亮, 桂南, 宫厚军, 杨星团, 屠基元, 姜胜耀. 石墨烯强化沸腾传热研究进展及应用综述[J]. 清华大学学报(自然科学版), 2022, 62(10): 1681-1690.
[5] 王泽英, 陈涛, 张继伟, 陈金奇, 冯政恒. 基于仿生结构流场的质子交换膜燃料电池的性能[J]. 清华大学学报(自然科学版), 2022, 62(10): 1697-1705.
[6] 杨旭, 程心雨, 刘荣正, 刘兵, 邵友林, 刘马林. 流化床-化学气相沉积法制备金属涂层包覆燃料颗粒[J]. 清华大学学报(自然科学版), 2021, 61(4): 361-366.
[7] 李雪, 张虹, 林程, 王树博, 谢晓峰. 直接膜沉积制备高性能增强型质子交换膜燃料电池膜电极[J]. 清华大学学报(自然科学版), 2021, 61(10): 1039-1045.
[8] 李子君, 王树博, 李微微, 朱彤, 谢晓峰. 波形流道增强质子交换膜燃料电池性能[J]. 清华大学学报(自然科学版), 2021, 61(10): 1046-1054.
[9] 赵阳, 王树博, 李微微, 谢晓峰. 质子交换膜燃料电池电压损耗[J]. 清华大学学报(自然科学版), 2020, 60(3): 254-262.
[10] 杨家培, 马骁, 雷体蔓, 罗开红, 帅石金. 燃料电池扩散层与流道中液态水传输数值模拟与协同优化[J]. 清华大学学报(自然科学版), 2019, 59(7): 580-586.
[11] 李跃华, 裴普成, 吴子尧, 贾肖宁. 质子交换膜燃料电池阴极单相流压降模型及验证[J]. 清华大学学报(自然科学版), 2018, 58(1): 43-49.
[12] 韩赞东, 李永杰, 陈以方. 陶瓷涂层结合质量的超声斜入射检测[J]. 清华大学学报(自然科学版), 2017, 57(5): 454-458.
[13] 王国磊, 伊强, 缪东晶, 陈恳, 王力强. 面向机器人喷涂的多变量涂层厚度分布模型[J]. 清华大学学报(自然科学版), 2017, 57(3): 324-330.
[14] 徐华池, 裴普成, 吴子尧. 质子交换膜燃料电池氢气渗透电流及电子电阻检测方法[J]. 清华大学学报(自然科学版), 2016, 56(6): 587-591.
[15] 潘玉龙, 王国磊, 朱丽, 陈雁, 陈恳. 管道喷涂机器人喷枪运动速度优化[J]. 清华大学学报(自然科学版), 2014, 54(2): 212-216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn