Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (10): 1046-1054    DOI: 10.16511/j.cnki.qhdxxb.2021.22.029
  燃料电池与锂离子电池 本期目录 | 过刊浏览 | 高级检索 |
波形流道增强质子交换膜燃料电池性能
李子君1,2, 王树博2, 李微微2, 朱彤1, 谢晓峰2,3
1. 东北大学 机械工程与自动化学院, 沈阳 110819;
2. 清华大学 核能与新能源技术研究院, 北京 100084;
3. 清华大学 山西清洁能源研究院, 太原 030032
Wavy channels to enhance the performance of proton exchange membrane fuel cells
LI Zijun1,2, WANG Shubo2, LI Weiwei2, ZHU Tong1, XIE Xiaofeng2,3
1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
3. Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, China
全文: PDF(5839 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 质子交换膜燃料电池(PEMFC)的性能和耐久性受到燃料的输送和水管理等的限制,流道对PEMFC的质量传输起着至关重要的作用。该文设计了一个三维波形流道,建立了与实验条件一致的单根直流道模型,对比研究了直流道和波形流道对PEMFC性能提升的机理,分析了两种流道内氧气、液态水、速度以及电流密度分布。研究结果表明:在较高电流密度下,三维波形流道强化了狭窄通道部分氧气向催化层的传输,提高了氧气的供应,有效地去除了流道内的液态水,使峰值功率密度提高了10.16%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李子君
王树博
李微微
朱彤
谢晓峰
关键词 质子交换膜燃料电池(PEMFC)三维流场气体传输水管理    
Abstract:The performance and durability of proton exchange membrane fuel cells (PEMFCs) are limited by factors related to fuel delivery and water management with the flow channel significantly affecting these factors. This study investigated flow in a three-dimensional wavy channel using a single straight channel model consistent with the experimental conditions. The model was used to analyze the performance of PEMFCs with straight channels and wavy channels and the oxygen, liquid water, velocity and current density distributions in the two channels. The results show that for high current densities, the three-dimensional wavy channel enhances the oxygen transfer from the narrow channel to the catalytic layer, improves the oxygen supply, effectively removes the liquid water in the channel, and increases the peak power density by 10.16%.
Key wordsproton exchange membrane fuel cell (PEMFC)    three dimensional flow field    gas transport    water management
收稿日期: 2021-03-23      出版日期: 2021-08-26
基金资助:山西省科技重大专项(20181101006)
通讯作者: 谢晓峰,副研究员,E-mail:xiexf@mail.tsinghua.edu.cn;朱彤,教授,E-mail:tongzhu@mail.neu.edu.cn     E-mail: xiexf@mail.tsinghua.edu.cn;tongzhu@mail.neu.edu.cn
引用本文:   
李子君, 王树博, 李微微, 朱彤, 谢晓峰. 波形流道增强质子交换膜燃料电池性能[J]. 清华大学学报(自然科学版), 2021, 61(10): 1046-1054.
LI Zijun, WANG Shubo, LI Weiwei, ZHU Tong, XIE Xiaofeng. Wavy channels to enhance the performance of proton exchange membrane fuel cells. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1046-1054.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.029  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I10/1046
  
  
  
  
  
  
  
  
  
  
  
[1] RAZA S S, JANAJREH I, GHENAI C. Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source[J]. Applied Energy, 2014, 136:909-920.
[2] 赵阳, 王树博, 李微微, 等. 质子交换膜燃料电池电压损耗[J]. 清华大学学报(自然科学版), 2020, 60(3):254-262. ZHAO Y, WANG S B, LI W W, et al. Polarization of the membrane electrode assembly in a proton exchange membrane fuel cell[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(3):254-262. (in Chinese)
[3] 杨家培, 马骁, 雷体蔓, 等. 燃料电池扩散层与流道中液态水传输数值模拟与协同优化[J]. 清华大学学报(自然科学版), 2019, 59(7):580-586. YANG J P, MA X, LEI T M, et al. Numerical simulations for optimizing the liquid water transport in the gas diffusion layer and gas channels of a PEMFC[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(7):580-586. (in Chinese)
[4] IJAODOLA O S, HASSAN Z E, OGUNGBEMI E, et al. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)[J]. Energy, 2019, 179:246-267.
[5] OUS T, ARCOUMANIS C. Degradation aspects of water formation and transport in proton exchange membrane fuel cell:A review[J]. Journal of Power Sources, 2013, 240:558-582.
[6] SPRINGER T E, ZAWODZINSKI T A, GOTTESFELD S. Polymer electrolyte fuel cell model[J]. Journal of Power Sources, 1991, 138(8):2334-2342.
[7] FALCÃO D S, OLIVEIRA V B, RANGEL C M, et al. Water transport through a PEM fuel cell:A one-dimensional model with heat transfer effects[J]. Chemical Engineering Science, 2009, 64(9):2216-2225.
[8] DJILALI N, LU D M. Influence of heat transfer on gas and water transport in fuel cells[J]. International Journal of Thermal Sciences, 2002, 41(1):29-40.
[9] LIU J X, GUO H, YE F, et al. Two-dimensional analytical model of a proton exchange membrane fuel cell[J]. Energy, 2017, 119:299-308.
[10] CHEVALIER S, JOSSET C, AUVITY B. Analytical solutions and dimensional analysis of pseudo 2D current density distribution model in PEM fuel cells[J]. Renewable Energy, 2018, 125:738-746.
[11] LEI X, MAMLOUK M, SCOTT K. A two dimensional agglomerate model for a proton exchange membrane fuel cell[J]. Energy, 2013, 61:196-210.
[12] YUAN W, TANG Y, PAN M Q, et al. Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance[J]. Renewable Energy, 2010, 35(3):656-666.
[13] DAWES J E, HANSPAL N S, FAMILY O A, et al. Three-dimensional CFD modelling of PEM fuel cells:An investigation into the effects of water flooding[J]. Chemical Engineering Science, 2009, 64(12):2781-2794.
[14] LIU H C, YAN W M, SOONG C Y, et al. Effects of baffle-blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell[J]. Journal of Power Sources, 2005, 142(1-2):125-133.
[15] SU A, WENG F B, CHI P H, et al. Effect of channel step-depth on the performance of proton exchange membrane fuel cells[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2007, 221(5):617-625.
[16] LE A D, ZHOU B. A numerical investigation on multi-phase transport phenomena in a proton exchange membrane fuel cell stack[J]. Journal of Power Sources, 2010, 195(16):5278-5291.
[17] JIAO K, BACHMAN J, ZHOU Y B, et al. Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell[J]. Applied Energy, 2014, 115:75-82.
[18] BILGILI M, BOSOMOIU M, TSOTRIDIS G. Gas flow field with obstacles for PEM fuel cells at different operating conditions[J]. International Journal of Hydrogen Energy, 2015, 40(5):2303-2311.
[19] SECANELL M, JARAUTA A, KOSAKIAN A, et al. PEM fuel cells, modeling[M]. New York:Springer, 2017.
[20] SONG G H, MENG H. Numerical modeling and simulation of PEM fuel cells:Progress and perspective[J]. Acta Mechanica Sinica, 2013, 29(3):318-334.
[1] 程新月, 王昊, 李智, 周晋军. 基于OPUT的城市LID设施防涝布设方法[J]. 清华大学学报(自然科学版), 2024, 64(4): 638-648.
[2] 王泽英, 陈涛, 张继伟, 陈金奇, 冯政恒. 基于仿生结构流场的质子交换膜燃料电池的性能[J]. 清华大学学报(自然科学版), 2022, 62(10): 1697-1705.
[3] 李雪, 张虹, 林程, 王树博, 谢晓峰. 直接膜沉积制备高性能增强型质子交换膜燃料电池膜电极[J]. 清华大学学报(自然科学版), 2021, 61(10): 1039-1045.
[4] 印定坤,陈正侠,李骐安,贾海峰,刘正权,沈雷. 降雨特征对多雨城市海绵改造小区径流控制效果的影响[J]. 清华大学学报(自然科学版), 2021, 61(1): 50-56.
[5] 吕恒, 倪广恒, 曹雪健, 田富强. 道路在城市排涝中的作用及影响因素定量评价[J]. 清华大学学报(自然科学版), 2018, 58(10): 906-913.
[6] 李跃华, 裴普成, 吴子尧, 贾肖宁. 质子交换膜燃料电池阴极单相流压降模型及验证[J]. 清华大学学报(自然科学版), 2018, 58(1): 43-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn