Wavy channels to enhance the performance of proton exchange membrane fuel cells
LI Zijun1,2, WANG Shubo2, LI Weiwei2, ZHU Tong1, XIE Xiaofeng2,3
1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China; 2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China; 3. Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, China
Abstract:The performance and durability of proton exchange membrane fuel cells (PEMFCs) are limited by factors related to fuel delivery and water management with the flow channel significantly affecting these factors. This study investigated flow in a three-dimensional wavy channel using a single straight channel model consistent with the experimental conditions. The model was used to analyze the performance of PEMFCs with straight channels and wavy channels and the oxygen, liquid water, velocity and current density distributions in the two channels. The results show that for high current densities, the three-dimensional wavy channel enhances the oxygen transfer from the narrow channel to the catalytic layer, improves the oxygen supply, effectively removes the liquid water in the channel, and increases the peak power density by 10.16%.
[1] RAZA S S, JANAJREH I, GHENAI C. Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source[J]. Applied Energy, 2014, 136:909-920. [2] 赵阳, 王树博, 李微微, 等. 质子交换膜燃料电池电压损耗[J]. 清华大学学报(自然科学版), 2020, 60(3):254-262. ZHAO Y, WANG S B, LI W W, et al. Polarization of the membrane electrode assembly in a proton exchange membrane fuel cell[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(3):254-262. (in Chinese) [3] 杨家培, 马骁, 雷体蔓, 等. 燃料电池扩散层与流道中液态水传输数值模拟与协同优化[J]. 清华大学学报(自然科学版), 2019, 59(7):580-586. YANG J P, MA X, LEI T M, et al. Numerical simulations for optimizing the liquid water transport in the gas diffusion layer and gas channels of a PEMFC[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(7):580-586. (in Chinese) [4] IJAODOLA O S, HASSAN Z E, OGUNGBEMI E, et al. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC)[J]. Energy, 2019, 179:246-267. [5] OUS T, ARCOUMANIS C. Degradation aspects of water formation and transport in proton exchange membrane fuel cell:A review[J]. Journal of Power Sources, 2013, 240:558-582. [6] SPRINGER T E, ZAWODZINSKI T A, GOTTESFELD S. Polymer electrolyte fuel cell model[J]. Journal of Power Sources, 1991, 138(8):2334-2342. [7] FALCÃO D S, OLIVEIRA V B, RANGEL C M, et al. Water transport through a PEM fuel cell:A one-dimensional model with heat transfer effects[J]. Chemical Engineering Science, 2009, 64(9):2216-2225. [8] DJILALI N, LU D M. Influence of heat transfer on gas and water transport in fuel cells[J]. International Journal of Thermal Sciences, 2002, 41(1):29-40. [9] LIU J X, GUO H, YE F, et al. Two-dimensional analytical model of a proton exchange membrane fuel cell[J]. Energy, 2017, 119:299-308. [10] CHEVALIER S, JOSSET C, AUVITY B. Analytical solutions and dimensional analysis of pseudo 2D current density distribution model in PEM fuel cells[J]. Renewable Energy, 2018, 125:738-746. [11] LEI X, MAMLOUK M, SCOTT K. A two dimensional agglomerate model for a proton exchange membrane fuel cell[J]. Energy, 2013, 61:196-210. [12] YUAN W, TANG Y, PAN M Q, et al. Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance[J]. Renewable Energy, 2010, 35(3):656-666. [13] DAWES J E, HANSPAL N S, FAMILY O A, et al. Three-dimensional CFD modelling of PEM fuel cells:An investigation into the effects of water flooding[J]. Chemical Engineering Science, 2009, 64(12):2781-2794. [14] LIU H C, YAN W M, SOONG C Y, et al. Effects of baffle-blocked flow channel on reactant transport and cell performance of a proton exchange membrane fuel cell[J]. Journal of Power Sources, 2005, 142(1-2):125-133. [15] SU A, WENG F B, CHI P H, et al. Effect of channel step-depth on the performance of proton exchange membrane fuel cells[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2007, 221(5):617-625. [16] LE A D, ZHOU B. A numerical investigation on multi-phase transport phenomena in a proton exchange membrane fuel cell stack[J]. Journal of Power Sources, 2010, 195(16):5278-5291. [17] JIAO K, BACHMAN J, ZHOU Y B, et al. Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell[J]. Applied Energy, 2014, 115:75-82. [18] BILGILI M, BOSOMOIU M, TSOTRIDIS G. Gas flow field with obstacles for PEM fuel cells at different operating conditions[J]. International Journal of Hydrogen Energy, 2015, 40(5):2303-2311. [19] SECANELL M, JARAUTA A, KOSAKIAN A, et al. PEM fuel cells, modeling[M]. New York:Springer, 2017. [20] SONG G H, MENG H. Numerical modeling and simulation of PEM fuel cells:Progress and perspective[J]. Acta Mechanica Sinica, 2013, 29(3):318-334.