Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (11): 1325-1333    DOI: 10.16511/j.cnki.qhdxxb.2020.22.043
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
前缘空化对弹性水翼振动特性影响数值模拟
姚志峰1,2, 赖桂桦1, 刘婧3, 曾永顺1
1. 中国农业大学 水利与土木工程学院, 北京 100083;
2. 中国农业大学 北京市供水管网系统安全与节能工程技术研究中心, 北京 100083;
3. 中国航发商用航空发动机有限责任公司, 上海 200241
Numerical simulations of the effect of leading edge cavitation on the vibration characteristics of an elastic hydrofoil
YAO Zhifeng1,2, LAI Guihua1, LIU Jing3, ZENG Yongshun1
1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China;
2. Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083, China;
3. AECC Commercial Aircraft Engine Co., Ltd., Shanghai 200241, China
全文: PDF(9600 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 水力机械偏离设计工况运行时,前缘空化将显著改变流场,进而改变流场与叶片结构之间的流固耦合效应,导致叶片振动特性发生改变。该文以NACA0009弹性水翼为研究对象,采用基于剪应力输运(SST)k-ω湍流模型和Zwart-Gerber-Belamri (ZGB)空化模型的三维Reynold平均数值模拟方法预测流场特性,利用分离式双向迭代的流固耦合方法计算空化条件下水翼的预设激振响应,获得了弹性水翼水中固有频率与附加阻尼比。通过实验数据验证了数值计算结果的可靠性。计算结果表明:随着空化数的降低,水翼前缘空化长度、厚度和边界层厚度均增大。随着空化区域长度的增加,水翼尾部脱落涡频率降低。空化系数变化对弯曲振动振型影响较小,但对扭转振动振型的影响较大。随着前缘空化区域的增大,弹性水翼弯曲模态与扭转模态的固有频率变化趋势一致,但附加阻尼比的变化依赖于振型。当弹性水翼在攻角2°、流速14 m/s的工况运行时,前缘空化出现后,弯曲振型下固有频率的最大增幅为2.25%,附加阻尼比减小9.00%,扭转振型下固有频率的最大增幅为20.12%,附加阻尼比增大165.70%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚志峰
赖桂桦
刘婧
曾永顺
关键词 结构动力学前缘空化水翼固有频率附加阻尼比    
Abstract:When hydraulic machinery operating conditions differ from the design conditions, leading edge cavitation can significantly disrupt the flow field and increase fluid-solid interactions (FSI) between the flow and the blade which change the system vibration characteristics. The flow around a NACA0009 elastic hydrofoil was simulated using the shear stress transfer (SST) turbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model in the three dimensional Reynolds average numerical simulation (RANS) method.The damped natural frequency and the added damping ratio were then calculated using a two-way FSI numerical method. The results were verified against existing experimental data. The computational results show that both the length and thickness of the cavitation region expand and the boundary layer on the hydrofoil leading edge grows thicker as the cavitation number decreases. The increasing cavitation length then reduces the shedding vortex frequency from the hydrofoil trailing edge. The leading edge cavity has little influence on the vibration shape of the bending mode, but greatly influences the vibration shape of the torsional mode. Enlarging the cavitation region increases the natural frequencies of the bending and torsional modes of the elastic hydrofoil in the same way, while the effects of the added damping ratio depend on the vibration mode. At an attack angle of 2° and a flow rate of 14 m/s, the natural frequency of the hydrofoil in the bending mode with leading edge cavitation increases up to 2.25% and the added damping ratio decreases by 9.00%, while the natural frequency in the torsional mode increases by 20.12% and the added damping ratio increases by 165.70%.
Key wordsstructural dynamics    leading edge cavitation    hydrofoil    natural frequency    added damping ratio
收稿日期: 2020-10-09      出版日期: 2021-10-19
基金资助:北京市大学生创新性实验计划(BJ202010019198);国家自然科学基金资助项目(51879266,51839001)
引用本文:   
姚志峰, 赖桂桦, 刘婧, 曾永顺. 前缘空化对弹性水翼振动特性影响数值模拟[J]. 清华大学学报(自然科学版), 2021, 61(11): 1325-1333.
YAO Zhifeng, LAI Guihua, LIU Jing, ZENG Yongshun. Numerical simulations of the effect of leading edge cavitation on the vibration characteristics of an elastic hydrofoil. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1325-1333.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.22.043  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I11/1325
  
  
  
  
  
  
  
  
  
  
  
[1] TRIVEDI C. A review on fluid structure interaction in hydraulic turbines:A focus on hydrodynamic damping[J]. Engineering Failure Analysis, 2017, 77:1-22.
[2] 胡秀成, 张立翔. 水泵水轮机增减负荷过程三维流动特性大涡模拟分析[J]. 水利学报, 2018, 49(4):492-500. HU X C, ZHANG L X. Numerical simulation of unsteady flow for a pump-turbine in transition cases with large-eddy simulation[J]. Journal of Hydraulic Engineering, 2018, 49(4):492-500. (in Chinese)
[3] DÖRFLER P, SICK M, COUTU A. Flow-induced pulsation and vibration in hydroelectric machinery[M]. London, UK:Springer, 2013.
[4] DEHKHARQANI A S, AIDANPÄÄ J O, ENGSTRÖM F, et al. A review of available methods for the assessment of fluid added mass, damping, and stiffness with an emphasis on hydraulic turbines[J]. Applied Mechanics Reviews, 2018, 70(5):050801.
[5] DUPONT P. Study of the dynamics of a partial cavitation in view of hydraulic turbomachines[D]. Lausanne, Swiss:Swiss Federal Institute of Technology in Lausanne, 1993.
[6] DE LA TORRE O, ESCALER X, EGUSQUIZA E, et al. Experimental investigation of added mass effects on a hydrofoil under cavitation conditions[J]. Journal of Fluids and Structures, 2013, 39:173-187.
[7] YAO Z F, WANG F J, DREYER M, et al. Effect of trailing edge shape on hydrodynamic damping for a hydrofoil[J]. Journal of Fluids and Structures, 2014, 51:189-198.
[8] 朱文若, 高忠信, 陆力, 等. 离心泵叶轮水中固有频率经验下降系数分析及优化[J]. 水利学报, 2013, 44(12):1455-1461. ZHU W R, GAO Z X, LU L, et al. Analysis and optimization on natural frequencies depreciation coefficient of centrifugal pump impeller in water[J]. Journal of Hydraulic Engineering, 2013, 44(12):1455-1461. (in Chinese)
[9] LINDHOLM U S, KANA D D, CHU W H. Elastic vibration characteristics of cantilever plates in water[J]. Journal of Ship Research, 1965, 9(2):11-36.
[10] BLEVINS R D, PLUNKETT R. Formulas for natural frequency and mode shape[J]. Journal of Applied Mechanics, 1980, 47(2):461-462.
[11] SEELEY C, COUTU A, MONETTE C, et al. Characterization of hydrofoil damping due to fluid-structure interaction using piezocomposite actuators[J] Smart Materials and Structures, 2012, 21(3):035027.
[12] BERGAN C W, TENGS E O, SOLEMSLIE B W, et al. An experimental investigation of the hydrodynamic damping of vibrating hydrofoils[C]//29th IAHR Symposium on Hydraulic Machinery and Systems. Kyoto, Japan, 2018:16-21.
[13] LIU X, ZHOU L J, ESCALER X, et al. Numerical simulation of added mass effects on a hydrofoil in cavitating flow using acoustic fluid-structure interaction[J]. Journal of Fluids Engineering, 2017, 139(4):041301.
[14] HU S L, LU C J, HE Y S. Fluid-structure interaction simulation of three-dimensional flexible hydrofoil in water tunnel[J]. Applied Mathematics and Mechanics, 2016, 37(1):15-26.
[15] 曾永顺, 姚志峰, 杨正军, 等. 非对称尾部形状水翼水力阻尼识别方法研究[J]. 水利学报, 2019, 50(7):864-873. ZENG Y S, YAO Z F, YANG Z J, et al. Study on hydrodynamic damping identification for an asymmetrical trailing edge shape hydrofoil[J]. Journal of Hydraulic Engineering, 2019, 50(7):864-873. (in Chinese)
[16] 曾卓雄. 稠密两相流动湍流模型及其应用[M]. 北京:机械工业出版社, 2012. ZENG Z X. Turbulence models in dense two-phase flow and its application[M]. Beijing:China Machine Press, 2012. (in Chinese)
[17] ZWART P J, GERBER A G, BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]//Proceedings of the 5th International Conference on Multiphase Flow. Yokohama, Japan, 2004.
[18] LIANG Q W, RODRIGUEZ C G, EGUSQUIZA E, et al. Numerical simulation of fluid added mass effect on a Francis turbine runner[J]. Computers & Fluids, 2007, 36(6):1106-1118.
[19] GAUTHIER J P, GIROUX A M, ETIENNE S, et al. A numerical method for the determination of flow-induced damping in hydroelectric turbines[J]. Journal of Fluids and Structures, 2017, 69:341-354.
[20] ACUPR P, ŠTEFAN D, HABÁN V, et al. FSI analysis of Francis-99 hydrofoil employing SBES model to adequately predict vortex shedding[J/OL]. Journal of Physics:Conference Series, 2019, 1296(1):012002. DOI:10. 1088/1742-6596/1296/1/012002.
[21] ZENG Y S, YAO Z F, GAO J Y, et al. Numerical investigation of added mass and hydrodynamic damping on a blunt trailing edge hydrofoil[J]. Journal of Fluids Engineering, 2019, 141(8):081108.
[22] DE LA TORRE O, ESCALER X, EGUSQUIZA E, et al. Numerical and experimental study of a nearby solid boundary and partial submergence effects on hydrofoil added mass[J]. Computers & Fluids, 2014, 91:1-9.
[23] CELIK I B, GHIA U, ROACHE P J, et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering, 2008, 130(7):078001.
[1] 江海龙, 王晓光, 王家骏, 柳汀, 林麒. 全模颤振四绳支撑系统运动特性与稳定性[J]. 清华大学学报(自然科学版), 2023, 63(11): 1856-1867.
[2] 管高峰, 徐登峰, 朱煜, 喻强, 李强. 基于弹性接触下的微幅滚动隔振机构[J]. 清华大学学报(自然科学版), 2019, 59(9): 780-784.
[3] 于广, 王立平, 吴军, 王冬. 3自由度并联主轴头的动力学建模及动态特性[J]. 清华大学学报(自然科学版), 2017, 57(12): 1317-1323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn