Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (12): 1371-1378    DOI: 10.16511/j.cnki.qhdxxb.2021.25.002
  专题:能源动力领域传热与热系统研究 本期目录 | 过刊浏览 | 高级检索 |
相变储热型太阳能甲醇重整反应器稳态及动态制氢特性的实验研究
马朝, 程泽东, 何雅玲
西安交通大学 能源与动力工程学院, 热流科学与工程教育部重点实验室, 西安 710049
Experimental study of the steady and dynamic efficiencies of a solar methanol steam reforming reactor filled with a phase change material for hydrogen production
MA Zhao, CHENG Zedong, HE Yaling
Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
全文: PDF(8653 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 太阳能热化学制氢是生产清洁能源的重要途径。针对太阳辐射波动性大,易造成太阳能甲醇重整制氢反应器温度剧烈变化,不利于反应器稳定运行等问题,该文利用相变材料对太阳能甲醇重整制氢反应器进行热管理,以提高反应器的制氢效率和运行平稳性。首先,提出了2种相变储热型热化学反应器结构;其次,实验探究了甲醇重整制氢反应器内部的传热特性及制氢特性,分析了反应器表面热流密度大小对反应器反应产物成分及甲醇转化率的影响规律;然后,研究了相变材料的添加位置对化学反应器稳态制氢效率的影响机制;最后,分析了在非稳态工况下,不同结构的相变储能型热化学反应器甲醇转化率的动态变化情况。结果表明,在反应器制氢特性方面,当反应器表面热流密度达到7 kW·m-2时,反应产物中H2占比为0.713,甲醇转化率为0.956,且随着热流密度的增大,热化学反应器的甲醇转化率不断增加。将相变材料分别填充在反应器壳侧和管侧后,稳态工况下,催化剂用量分别减少了66.0%和13.5%,反应器的甲醇转化率仍较高,单位体积催化剂的反应速率更高;动态工况下,热化学反应器的甲醇转化率变化幅度分别缩小了23.4%和13.7%,有效提高了反应器的热惯性,使反应器运行更加平稳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马朝
程泽东
何雅玲
关键词 太阳能热化学甲醇重整制氢相变储热动态特性    
Abstract:Solar thermochemical reactors are a promising way to produce clean hydrogen energy. However, the operation of a reactor driven by solar irradiation will fluctuate as the solar irradiation changes. This study analyzed the thermal management of a solar methanol steam reforming reactor for hydrogen production with phase change material (PCM) in the reactor. The analyses considered two latent heat type thermochemical reactors. The thermal and hydrogen production characteristics of these thermochemical reactors were investigated experimentally to show the influence of the heat flux variations. Then, the models were used to study the effect of the phase change material position on the reactor hydrogen production. Finally, the dynamic efficiencies of the latent heat type reactors were compared with that of the original design to show that when the reactor surface heat flux reaches 7 kW/m2, the H2 proportion of the production rate is 0.713 and the methanol conversion efficiency is 0.956. Increasing the heat flux increases the methanol conversion efficiency. Adding the PCM in the shell reduces the required catalyst mass by 66.0% while adding the PCM in the tube side reduces the required catalyst mass by 13.5% for steady-state operation while the reactor continues to operate efficiently. For dynamic operation, the methanol conversion efficiency is reduced by 23.4% when the PCM is added to the shell side and by 13.7% when the PCM is added to the tube side while the reactor thermal inertia is improved to cope with sudden heat flux changes.
Key wordssolar thermochemical reaction    solar methanol steam reforming reactor    phase change material    dynamic operation
收稿日期: 2020-10-12      出版日期: 2021-12-11
基金资助:国家自然科学基金资助项目(51888103,52076161)
通讯作者: 何雅玲,教授,E-mail:yalinghe@mail.xjtu.edu.cn     E-mail: yalinghe@mail.xjtu.edu.cn
引用本文:   
马朝, 程泽东, 何雅玲. 相变储热型太阳能甲醇重整反应器稳态及动态制氢特性的实验研究[J]. 清华大学学报(自然科学版), 2021, 61(12): 1371-1378.
MA Zhao, CHENG Zedong, HE Yaling. Experimental study of the steady and dynamic efficiencies of a solar methanol steam reforming reactor filled with a phase change material for hydrogen production. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1371-1378.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.002  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I12/1371
  
  
  
  
  
  
  
  
  
  
[1] REAL D, DUMANYAN I, HOTZ N. Renewable hydrogen production by solar-powered methanol reforming[J]. International Journal of Hydrogen Energy, 2016, 41(28):11914-11924.
[2] CHENG Z D, MEN J J, ZHAO X R, et al. A comprehensive study on parabolic trough solar receiver-reactors of methanol-steam reforming reaction for hydrogen production[J]. Energy Conversion and Management, 2019, 186:278-292.
[3] HE Y L, WANG K, QIU Y, et al. Review of the solar flux distribution in concentrated solar power:Non-uniform features, challenges, and solutions[J]. Applied Thermal Engineering, 2019, 149:448-474.
[4] HONG H, JIN H G, JI J, et al. Solar thermal power cycle with integration of methanol decomposition and middle-temperature solar thermal energy[J]. Solar Energy, 2005, 78(1):49-58.
[5] LIU Q B, HONG H, YUAN J L, et al. Experimental investigation of hydrogen production integrated methanol steam reforming with middle-temperature solar thermal energy[J]. Applied Energy, 2009, 86(2):155-162.
[6] HONG H, LIU Q B, JIN H G. Operational performance of the development of a 15 kW parabolic trough mid-temperature solar receiver/reactor for hydrogen production[J]. Applied Energy, 2012, 90(1):137-141.
[7] CHENG Z D, HE Y L, CUI F Q. Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers[J]. International Journal of Heat and Mass Transfer, 2012, 55(21-22):5631-5641.
[8] WANG Y J, LIU Q B, SUN J, et al. A new solar receiver/reactor structure for hydrogen production[J]. Energy Conversion and Management, 2017, 133:118-126.
[9] ZHENG Z J, HE Y, HE Y L, et al. Numerical optimization of catalyst configurations in a solar parabolic trough receiver-reactor with non-uniform heat flux[J]. Solar Energy, 2015, 122:113-125.
[10] LIU Y, CHEN Q, HU K, et al. Porosity distribution optimization catalyst for methanol decomposition in solar parabolic trough receiver-reactors by the variational method[J]. Applied Thermal Engineering, 2018, 129:1563-1572.
[11] ROWE S C, HISCHIER I, PALUMBO A W, et al. Nowcasting, predictive control, and feedback control for temperature regulation in a novel hybrid solar-electric reactor for continuous solar-thermal chemical processing[J]. Solar Energy, 2018, 174:474-488.
[12] MA Z, YANG W W, LI M J, et al. High efficient solar parabolic trough receiver reactors combined with phase change material for thermochemical reactions[J]. Applied Energy, 2018, 230:769-783.
[13] TAO Y B, HE Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93:245-259.
[14] MA Z, YANG W W, YUAN F, et al. Investigation on the thermal performance of a high-temperature latent heat storage system[J]. Applied Thermal Engineering, 2017, 122:579-592.
[15] ZHAO J T, LÜ P Z, RAO Z H. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack[J]. Experimental Thermal and Fluid Science, 2017, 82:182-188.
[16] GAO X K, ZHANG Z J, YUAN Y P, et al. Coupled cooling method for multiple latent heat thermal storage devices combined with pre-cooling of envelope:Model development and operation optimization[J]. Energy, 2018, 159:508-524.
[17] KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3):955-970.
[18] LIU X F, HONG H, JIN H G. Mid-temperature solar fuel process combining dual thermochemical reactions for effectively utilizing wider solar irradiance[J]. Applied Energy, 2017, 185:1031-1039.
[1] 张展博, 王振雷, 王昕. 基于正交局部慢性特征的故障检测方法[J]. 清华大学学报(自然科学版), 2020, 60(8): 693-700.
[2] 邓焱,邢超,张嵘,周斌. 高效率的MEMS陀螺管芯动态特性测试方法[J]. 清华大学学报(自然科学版), 2014, 54(6): 811-814.
[3] 刘向锋, 徐辰, 黄伟峰. 基于半解析法的极端工况干气密封动态特性研究与参数设计[J]. 清华大学学报(自然科学版), 2014, 54(2): 223-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn