Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (12): 1379-1388    DOI: 10.16511/j.cnki.qhdxxb.2020.25.034
  专题:能源动力领域传热与热系统研究 本期目录 | 过刊浏览 | 高级检索 |
双波长闪光拉曼热扩散率测量系统研发及应用
樊傲然, 马维刚, 王海东, 张兴
清华大学 工程力学系, 热科学与动力工程教育部重点实验室, 北京 100084
Development and application of dual-wavelength flash Raman measurement system
FAN Aoran, MA Weigang, WANG Haidong, ZHANG Xing
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
全文: PDF(7490 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 纳米材料热传递特性的高精度原位测量,是传热学研究中亟待解决的关键问题。拉曼光谱法是目前最理想的纳米尺度非接触式原位测量方法之一,但现有的瞬态拉曼光谱法时间、空间分辨率较低,显著影响了测量精度。该文研发了时间分辨率可达100 ps、空间分辨率可达100 nm的双波长闪光拉曼测量系统:搭建一束较强的脉冲激光加热样品,使用另一束波长不同的、无加热效应的脉冲激光作为探测光,激发待测样品和基底的拉曼光谱,借助拉曼峰位偏移同时测定样品和基底温度。通过调整探测脉冲和加热脉冲之间的时间差,可高时间分辨率地获得样品和基底的温度变化曲线,进而测定纳米材料热扩散率。通过改变探测激光与加热激光的光斑中心距,可高空间分辨率地获得样品温度空间分布,从而进一步提高瞬态测量灵敏度,并可实现对有基底支撑纳米材料与基底之间接触热导的测量。基于上述测量系统,该文测量了有基底支撑双层石墨烯的热传递特性,并与文献结果进行了对比,分析说明了此系统的测量优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊傲然
马维刚
王海东
张兴
关键词 双波长闪光拉曼测量系统热扩散率接触热导纳米材料石墨烯    
Abstract:Accurate, in situ measurements of nanomaterial thermophysical properties have become a key heat transfer research problem. Raman-based methods are nearly ideal non-contact methods for nanoscale measurements. However, the limited temporal and spatial resolutions of previous Raman-based methods significantly affected their measurement accuracy. This study developed a dual-wavelength flash Raman measurement system with 100 ps temporal resolution and 100 nm spatial resolution. A pulsed laser was used to heat the sample with another pulsed laser with a different wavelength and negligible heating effect used to excited the Raman scattering to simultaneously measure the sample and substrate temperatures. The time delay between the heating pulse and the probing pulse was varied to measure the transient temperature variations of the sample and substrate to determine the thermal diffusivity of the nanomaterial. The spot center distance between the probing and heating lasers was varied to obtain high spatial resolution temperature distributions to further improve the transient measurement sensitivity and to determine the thermal contact conductance between the substrate supported nanomaterials and the substrate. Measurements of the properties of supported bilayer graphene show the system advantages.
Key wordsdual-wavelength flash Raman measurement system    thermal diffusivity    thermal contact conductance    nanomaterial    grapheme
收稿日期: 2020-05-16      出版日期: 2021-12-11
基金资助:国家重大科研仪器研制项目(51827807);国家自然科学基金重点项目(51636002)
通讯作者: 张兴,教授,E-mail:x-zhang@tsinghua.edu.cn     E-mail: x-zhang@tsinghua.edu.cn
引用本文:   
樊傲然, 马维刚, 王海东, 张兴. 双波长闪光拉曼热扩散率测量系统研发及应用[J]. 清华大学学报(自然科学版), 2021, 61(12): 1379-1388.
FAN Aoran, MA Weigang, WANG Haidong, ZHANG Xing. Development and application of dual-wavelength flash Raman measurement system. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1379-1388.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.034  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I12/1379
  
  
  
  
  
  
  
  
  
  
[1] PRASHER R. Graphene spreads the heat[J]. Science, 2010, 328(5975):185-186.
[2] ONG Z Y, POP E, SHIOMI J. Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica[J]. Physical Review B, 2011, 84(16):165418.
[3] CAI W W, MOORE A L, ZHU Y W, et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition[J]. Nano Letters, 2010, 10(5):1645-1651.
[4] LI Q Y, XIA K L, ZHANG J, et al. Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method[J]. Nanoscale, 2017, 9(30):10784-10793.
[5] LI Q Y, TAKAHASHI K, AGO H, et al. Temperature dependent thermal conductivity of a suspended submicron graphene ribbon[J]. Journal of Applied Physics, 2015, 117(6):065102.
[6] XIE H Q, CHEN L F, YU W, et al. Temperature dependent thermal conductivity of a free-standing graphene nanoribbon[J]. Applied Physics Letters, 2013, 102(11):111911.
[7] FUJII M, ZHANG X, XIE H Q, et al. Measuring the thermal conductivity of a single carbon nanotube[J]. Physical Review Letters, 2005, 95(6):065502.
[8] HIROTANI J, IKUTA T, NISHIYAMA T, et al. Thermal boundary resistance between the end of an individual carbon nanotube and a Au surface[J]. Nanotechnology, 2011, 22(31):315702.
[9] HAYASHI H, TAKAHASHI K, IKUTA T, et al. Direct evaluation of ballistic phonon transport in a multi-walled carbon nanotube[J]. Applied Physics Letters, 2014, 104(11):113112.
[10] MA W G, MIAO T T, ZHANG X, et al. A T-type method for characterization of the thermoelectric performance of an individual free-standing single crystal Bi2S3 nanowire[J]. Nanoscale, 2016, 8(5):2704-2710.
[11] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(21):215502.
[12] WINGERT M C, KWON S, HU M, et al. Sub-amorphous thermal conductivity in ultrathin crystalline silicon nanotubes[J]. Nano Letters, 2015, 15(4):2605-2611.
[13] XU X F, PEREIRA L F C, WANG Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene[J]. Nature Communications, 2014, 5:3689.
[14] WANG H D, ZHENG D S, ZHANG X, et al. Benchmark characterization of the thermoelectric properties of individual single-crystalline CdS nanowires by a H-type sensor[J]. RSC Advances, 2017, 7(41):25298-25304.
[15] WU G S, YANG J K, GE S L, et al. Thermal conductivity measurement for carbon-nanotube suspensions with 3ω method[J]. Advanced Materials Research, 2009, 60-61:394-398.
[16] CHEN Z, JANG W, BAO W, et al. Thermal contact resistance between graphene and silicon dioxide[J]. Applied Physics Letters, 2009, 95(16):161910.
[17] DAMES C. Measuring the thermal conductivity of thin films:3 omega and related electrothermal methods[J]. Annual Review of Heat Transfer, 2013, 16(16):7-49.
[18] KOH Y K, BAE M H, CAHILL D G, et al. Heat conduction across monolayer and few-layer graphenes[J]. Nano Letters, 2010, 10(11):4363-4368.
[19] MIAO T T, MA W G, YAN S, et al. Thermal transport and thermal stress in a molybdenum film-glass substrate system[J]. Journal of Vacuum Science & Technology B, 2016, 34(2):021801.
[20] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907.
[21] WANG H D, LIU J H, ZHANG X, et al. Raman measurements of optical absorption and heat transfer coefficients of a single carbon fiber in atmosphere environment[J]. International Journal of Heat and Mass Transfer, 2014, 70:40-45.
[22] CALIZO I, BALANDIN A A, BAO W, et al. Temperature dependence of the Raman spectra of graphene and graphene multilayers[J]. Nano Letters, 2007, 7(9):2645-2649.
[23] CHEN S S, LI Q Y, ZHANG Q M, et al. Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping[J]. Nanotechnology, 2012, 23(36):365701.
[24] LI Q Y, ZHANG X, HU Y D. Laser flash Raman spectroscopy method for thermophysical characterization of 2D nanomaterials[J]. Thermochimica Acta, 2014, 592:67-72.
[25] LI Q Y, MA W G, ZHANG X. Laser flash Raman spectroscopy method for characterizing thermal diffusivity of supported 2D nanomaterials[J]. International Journal of Heat and Mass Transfer, 2016, 95:956-963.
[26] LIU J H, WANG H D, HU Y D, et al. Laser flash-Raman spectroscopy method for the measurement of the thermal properties of micro/nano wires[J]. Review of Scientific Instruments, 2015, 86(1):014901.
[27] XU S, WANG T Y, HURLEY D, et al. Development of time-domain differential Raman for transient thermal probing of materials[J]. Optics Express, 2015, 23(8):10040-10056.
[28] WANG T Y, XU S, HURLEY D H, et al. Frequency-resolved raman for transient thermal probing and thermal diffusivity measurement[J]. Optics Letters, 2016, 41(1):80-83.
[29] LI C S, XU S, YUE Y A, et al. Thermal characterization of carbon nanotube fiber by time-domain differential Raman[J]. Carbon, 2016, 103:101-108.
[30] JUDEK J, GERTYCH A P, AS'G WINIARSKI M, et al. High accuracy determination of the thermal properties of supported 2D materials[J]. Scientific Reports, 2015, 5:12422.
[31] REPARAZ J S, CHAVEZ-ANGEL E, WAGNER M R, et al. A novel contactless technique for thermal field mapping and thermal conductivity determination:Two-laser Raman thermometry[J]. Review of Scientific Instruments, 2014, 85(3):034901.
[32] FAN A R, HU Y D, MA W G, et al. Dual-wavelength laser flash Raman spectroscopy method for in-situ measurements of the thermal diffusivity:Principle and experimental verification[J]. Journal of Thermal Science, 2019, 28(2):159-168.
[33] HULL R. Properties of crystalline silicon[M]. London, UK:The Institution of Engineering and Technology, 1999.
[34] HAYNES W M. CRC handbook of chemistry and physics[M]. Boca Raton:CRC Press, 2014.
[35] HU Y D, FAN A R, LIU J H, et al. A dual-wavelength flash Raman method for simultaneously measuring thermal diffusivity and line thermal contact resistance of an individual supported nanowire[J]. Thermochimica Acta, 2020, 683:178473.
[36] HU Y D, FAN A R, WANG H D, et al. Dual-wavelength flash Raman mapping method for measuring thermal diffusivity of the suspended nanowire[J]. Science China Technological Sciences, 2020, 63(5):748-754.
[37] FAN A R, HU Y D, WANG H D, et al. Dual-wavelength flash Raman mapping method for measuring thermal diffusivity of suspended 2D nanomaterials[J]. International Journal of Heat and Mass Transfer, 2019, 143:118460.
[38] ZHANG Y F, FAN A R, LUO S T, et al. Suspended 2D anisotropic materials thermal diffusivity measurements using dual-wavelength flash Raman mapping method[J]. International Journal of Heat and Mass Transfer, 2019, 145:118795.
[39] WANG H D, KURATA K, FUKUNAGA T, et al. Width dependent intrinsic thermal conductivity of suspended monolayer graphene[J]. International Journal of Heat and Mass Transfer, 2017, 105:76-80.
[40] WANG Z Q, XIE R G, BUI C T, et al. Thermal transport in suspended and supported few-layer graphene[J]. Nano Letters, 2011, 11(1):113-118.
[41] GHOSH S, BAO W Z, NIKA D L, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nature Materials, 2010, 9(7):555-558.
[42] FAUGERAS C, FAUGERAS B, ORLITA M, et al. Thermal conductivity of graphene in corbino membrane geometry[J]. ACS Nano, 2010, 4(4):1889-1892.
[43] JANG W, BAO W, JING L, et al. Thermal conductivity of suspended few-layer graphene by a modified T-bridge method[J]. Applied Physics Letters, 2013, 103(13):133102.
[44] SEOL J H, JO I, MOORE A L, et al. Two-dimensional phonon transport in supported graphene[J]. Science, 2010, 328(5975):213-216.
[1] 黄潇立, 陈泽亮, 桂南, 杨星团, 屠基元, 姜胜耀. 还原氧化石墨烯纳米流体池沸腾强化换热实验[J]. 清华大学学报(自然科学版), 2023, 63(8): 1291-1296.
[2] 沈畅, 邵森, 郭祺峰, 周宇昕, 游小清. 火焰合成凝聚相纳米材料调控技术的研究进展[J]. 清华大学学报(自然科学版), 2023, 63(4): 546-559.
[3] 黄潇立, 陈泽亮, 桂南, 宫厚军, 杨星团, 屠基元, 姜胜耀. 石墨烯强化沸腾传热研究进展及应用综述[J]. 清华大学学报(自然科学版), 2022, 62(10): 1681-1690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn