Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (12): 1452-1461    DOI: 10.16511/j.cnki.qhdxxb.2020.25.043
  新型冠状病毒 本期目录 | 过刊浏览 | 高级检索 |
新冠疫情发生城市仿真模型及防控措施评价——以武汉市为例
丁莹1,2, 张健钦1,2, 杨木2, 宫鹏3, 贾礼朋1,2, 邓少存1,2
1. 北京建筑大学 测绘与城市空间信息学院, 北京 106216;
2. 自然资源部城市空间信息重点实验室, 北京 106216;
3. 清华大学 地球系统科学系, 地球系统数值模拟教育部重点实验室, 北京 100084
Communicable disease transmission model for the prevention and control of COVID-19 in Wuhan City, China
DING Ying1,2, ZHANG Jianqin1,2, YANG Mu2, GONG Peng3, JIA Lipeng1,2, DENG Shaocun1,2
1. School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 106216, China;
2. Key Laboratory of Urban Spatial Information, Natural Resources Ministry, Beijing 106216, China;
3. Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
全文: PDF(7083 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 疫情防控对城市运行具有重要的影响,针对现有传染病模型难以精细化模拟评价防控措施的问题,以武汉市为例构建基于Agent的新型冠状病毒肺炎(corona virus disease 2019,COVID-19)疫情城市仿真模型,复现武汉疫情的传播过程。对疫情期间政府管控措施与医院诊疗水平进行量化描述,分析不同强度防疫措施下的感染情况及空间分布特征。并在此基础上模拟了复工后核酸检测的主动防疫效果。结果表明,该智能体建模方法能够高精度复现武汉疫情的时空传播过程,可以对政府管控措施与实施的诊疗方案进行仿真评价,为传染病预防控制部门提供科学的辅助决策信息。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁莹
张健钦
杨木
宫鹏
贾礼朋
邓少存
关键词 COVID-19智能体仿真复杂网络时空特征    
Abstract:Epidemic prevention and control strongly affect people's lives in cities, but existing communicable disease models cannot accurately simulate the effects of prevention and control procedures. A city simulation model for the 2019 coronavirus epidemic was developed based on an Agent model for Wuhan, China to model the epidemic transmission process. The model includes the government control measures and the hospital diagnosis and treatment levels during the epidemic with analyses of the infection rates and spatial distributions for various epidemic control measures. The model was also used to model the active anti-epidemic impact of nucleic acid testing after people returned to work. The results show that this modeling method accurately reproduces the spatio-temporal transmission characteristics of the Wuhan epidemic. Thus, this method can be used to evaluate government control measures and to implement diagnosis and treatment plans for decision-making for infectious disease prevention and control.
Key wordsCOVID-19    intelligent simulation    complex network    spatial-temporal features
收稿日期: 2020-08-04      出版日期: 2021-12-11
基金资助:国家自然科学基金资助项目(41771413,41701473);北京市自然科学基金资助项目(8202013)
通讯作者: 张健钦,教授,E-mail:zhangjianqin@bucea.edu.cn     E-mail: zhangjianqin@bucea.edu.cn
引用本文:   
丁莹, 张健钦, 杨木, 宫鹏, 贾礼朋, 邓少存. 新冠疫情发生城市仿真模型及防控措施评价——以武汉市为例[J]. 清华大学学报(自然科学版), 2021, 61(12): 1452-1461.
DING Ying, ZHANG Jianqin, YANG Mu, GONG Peng, JIA Lipeng, DENG Shaocun. Communicable disease transmission model for the prevention and control of COVID-19 in Wuhan City, China. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1452-1461.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.043  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I12/1452
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 中华人民共和国国家卫生健康委员会疾病预防控制局. 《中国-世界卫生组织新型冠状病毒肺炎(COVID-19)联合考察报告》发布[EB/OL]. (2020-02-29)[2020-07-31]. http://www.nhc.gov.cn/jkj/s3578/202002/87fd92510d094e4b9bad597608f5cc2c.shtml. Bureau of Disease Control and Preventions, National Health Commission of the People's Republic of China. China-WHO novel coronavirus pneumonia (COVID-19) joint investigation report[EB/OL]. (2020-02-29)[2020-07-31]. http://www.nhc.gov.cn/jkj/s3578/202002/87fd92510d094e4b9bad597608f5cc2c.shtml. (in Chinese)
[2] 中国疾病预防控制中心新型冠状病毒肺炎应急响应机制流行病学组. 新型冠状病毒肺炎流行病学特征分析[J]. 中华流行病学杂志, 2020, 41(2):145-151. Epidemiology Working Group for NCIP Epidemic Response. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China[J]. Chinese Journal of Epidemiology, 2020, 41(2):145-151. (in Chinese)
[3] 夏吉喆, 周颖, 李珍, 等. 城市时空大数据驱动的新型冠状病毒传播风险评估——以粤港澳大湾区为例[J]. 测绘学报, 2020, 49(6):671-680. XIA J Z, ZHOU Y, LI Z, et al. COVID-19 risk assessment driven by urban spatiotemporal big data:A case study of Guangdong-Hong Kong-Macao Greater Bay Area[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6):671-680. (in Chinese)
[4] 陈彬, 艾川, 马亮, 等. 大局稳定、局部冒泡, 应对疫情应做好持久战的准备——利用计算实验进行疫情间复工复学风险分析[J]. 系统仿真学报, 2020-02-24. CHEN B, AI C, MA L, et al. The overall situation is stable and partially bubbling, and the epidemic should be prepared for a protracted war-using computational experiments to analyze the risk of resuming work and school between epidemics[J]. Journal of System Simulation, 2020-02-24. (in Chinese)
[5] 范如国, 王奕博, 罗明, 等. 基于SEIR的新冠肺炎传播模型及拐点预测分析[J]. 电子科技大学学报, 2020, 49(3):369-374. FAN R G, WANG Y B, LUO M, et al. SEIR-based COVID-19 transmission model and inflection point prediction analysis[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3):369-374. (in Chinese)
[6] 耿辉, 徐安定, 王晓艳, 等. 基于SEIR模型分析相关干预措施在新型冠状病毒肺炎疫情中的作用[J]. 暨南大学学报(自然科学与医学版), 2020, 41(2):175-180. GENG H, XU A D, WANG X Y, et al. Analysis of the role of current prevention and control measures in the epidemic of corona virus disease 2019 based on SEIR model[J]. Journal of Jinan University (Natural Science & Medicine Edition), 2020, 41(2):175-180. (in Chinese)
[7] 曹盛力, 冯沛华, 时朋朋. 修正SEIR传染病动力学模型应用于湖北省2019冠状病毒病(COVID-19)疫情预测和评估[J]. 浙江大学学报(医学版), 2020, 49(2):178-184. CAO S L, FENG P H, SHI P P. Study on the epidemic development of COVID-19 in Hubei province by a modified SEIR model[J]. Journal of Zhejiang University (Medical Sciences), 2020, 49(2):178-184. (in Chinese)
[8] YANG Z F, ZENG Z Q, WANG K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of Thoracic Disease, 2020, 12(3):165-174.
[9] 王志心, 刘治, 刘兆军. 基于机器学习的新型冠状病毒(COVID-19)疫情分析及预测[J]. 生物医学工程研究, 2020, 39(1):1-5. WANG Z X, LIU Z, LIU Z J. COVID-19 analysis and forecast based on machine learning[J]. Journal of Biomedical Engineering Research, 2020, 39(1):1-5. (in Chinese)
[10] 张琳. 新冠肺炎疫情传播的一般增长模型拟合与预测[J]. 电子科技大学学报, 2020, 49(3):345-348. ZHANG L. Fitness of the generalized growth to the COVID-19 data[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3):345-348. (in Chinese)
[11] 黄国, 朱宇平, 黄焕莺. 季节性ARIMA模型在江门市手足口病疫情预测中的应用[J]. 中国卫生统计, 2019, 36(1):65-67. HUANG G, ZHU Y P, HUANG H Y. The application of seasonal ARIMA model in forecasting HFMD epidemic situation in Jiangmen city[J]. Chinese Journal of Health Statistics, 2019, 36(1):65-67. (in Chinese)
[12] 李昊, 段德光, 陶学强, 等. 传染病动力学模型及其在新型冠状病毒肺炎疫情仿真预测中的应用综述[J]. 医疗卫生装备, 2020, 41(3):7-12. LI H, DUAN D G, TAO X Q, et al. Review on infectious disease dynamics models and their applications in COVID-19 epidemic simulation and prediction[J]. Chinese Medical Equipment Journal, 2020, 41(3):7-12. (in Chinese)
[13] 黄丽红, 魏永越, 沈思鹏, 等. 常见新型冠状病毒肺炎疫情预测方法及其评价[J]. 中国卫生统计, 2020, 37(3):322-326. HUANG L H, WEI Y Y, SHEN S P, et al. Evaluation of predictive models novel coronavirus pneumonia[J]. Chinese Journal of Health Statistics, 2020, 37(3):322-326. (in Chinese)
[14] 宋智超. 基于人工社会的流行病传播与控制仿真方法研究[D]. 长沙:国防科学技术大学, 2012. SONG Z C. Research on simulation technologies of the epidemics transmission and control based on social society[D]. Changsha:National University of Defense Technology, 2012. (in Chinese)
[15] 谭骏翔. 基于多智能体与GIS集成的艾滋病传播仿真建模技术研究[D]. 昆明:云南师范大学, 2009. TAN J X. Research on AIDS transmission simulation modeling technology based on Multi-Agent and GIS Integration[D]. Kunming:Yunnan Normal University, 2009. (in Chinese)
[16] 杨昆, 李江荣, 崔庆雄, 等. 艾滋病传播的智能体与GIS的集成模型研究[J]. 云南师范大学学报(哲学社会科学版), 2008, 40(4):14-20. YANG K, LI J R, CUI Q X, et al. The spreading agent of aids and the GIS model[J]. Journal of Yunnan Normal University (Humanities and Social Sciences Edition), 2008, 40(4):14-20. (in Chinese)
[17] 武汉市统计局.2019年武汉市国民经济和社会发展统计公报[EB/OL]. (2020-03-29)[2020-07-07]. http://tjj.wuhan.gov.cn/tjfw/tjgb/202004/t20200429_1191417.shtml. Wuhan Bureau of Statistics. Wuhan national economic and social development statistical announcement in 2019[EB/OL]. (2020-03-29)[2020-07-07]. http://tjj.wuhan.gov.cn/tjfw/tjgb/202004/t20200429_1191417.shtml. (in Chinese)
[18] 葛渊峥, 宋智超, 孟荣清. 人工社会大规模人工人口生成方法综述[J]. 系统仿真学报, 2019, 31(10):1951-1959. GE Y Z, SONG Z C, MENG R Q. The method summary of generating large-scale artificial population in an artificial society[J]. Journal of System Simulation, 2019, 31(10):1951-1959. (in Chinese)
[19] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684):440-442.
[20] 梁志妹. 基于多Agent、复杂网络与GIS的甲型H1N1流感传播仿真平台研究[D]. 昆明:云南师范大学, 2011. LI Z M. Research on the simulation platform of influenza a h1n1 spread based on multi-agent, complex network and GIS[D]. Kunming:Yunnan Normal University, 2011. (in Chinese)
[21] 陈关荣. 复杂网络及其新近研究进展简介[J]. 力学进展, 2008, 38(6):653-662. CHEN G R. Introduction to complex networks and their recent advances[J]. Advances in Mechanics, 2008, 38(6):653-662. (in Chinese)
[22] 刘涛, 黎夏, 刘小平. 基于小世界网络的多智能体及传染病时空传播模拟[J]. 科学通报, 2009, 54(24):45-54. LIU T, LI X, LIU X P. Integration of small world networks with mult-agent systems for simulating epidemic spatiotemporal transmission[J]. Chinese Science Bulletin, 2009, 54(24):45-54. (in Chinese)
[23] 刘耀宝, 曹俊. 我国境外输入性疟疾防控策略对当前新型冠状病毒肺炎防控工作的启示[J]. 中国血吸虫病防治杂志, 2020, 32(2):113-118. LIU Y B, CAO J. Management of coronavirus disease 2019(COVID-19):Experiences from imported malaria control in China[J]. Chinese Journal of Schistosomiasis Control, 2020, 32(2):113-118. (in Chinese)
[1] 李自圆, 孙昊, 李林波. 基于手机信令数据的长三角全域城际出行网络分析[J]. 清华大学学报(自然科学版), 2022, 62(7): 1203-1211.
[2] 谢丽霞, 孙红红, 杨宏宇, 张良. 基于K-shell的复杂网络关键节点识别方法[J]. 清华大学学报(自然科学版), 2022, 62(5): 849-861.
[3] 王春艳, 张景翔, 龙洁, 刘毅. 基于面板数据回归模型的家庭水-能消费时空特征与影响因素[J]. 清华大学学报(自然科学版), 2022, 62(3): 614-626.
[4] 郁湧, 王莹港, 罗正国, 杨燕, 王鑫锴, 高涛, 于倩. 基于聚类系数和节点中心性的链路预测算法[J]. 清华大学学报(自然科学版), 2022, 62(1): 98-104.
[5] 吴家麟, 翁文国. 新冠肺炎病毒颗粒在空调大巴中的传播与乘客感染风险[J]. 清华大学学报(自然科学版), 2021, 61(2): 89-95.
[6] 黄梦瑶, 黄丽达, 袁宏永, 刘罡. 社交隔离对COVID-19的发展影响[J]. 清华大学学报(自然科学版), 2021, 61(2): 96-103.
[7] 孔啸, 刘乃嘉, 张梦豪, 徐明伟. COVID-19疫情前后高校在线教学数据分析[J]. 清华大学学报(自然科学版), 2021, 61(2): 104-116.
[8] 邱桐, 陈湘生, 苏栋. 城市地下空间综合韧性防灾抗疫建设框架[J]. 清华大学学报(自然科学版), 2021, 61(2): 117-127.
[9] 孙潇潇,黄弘,李瑞奇. 基于多智能体的突发事件下城市应急管理机制仿真[J]. 清华大学学报(自然科学版), 2021, 61(1): 70-76.
[10] 王晓旭, 王丽珍, 王家龙. 交通数据的时空并置模糊拥堵模式挖掘[J]. 清华大学学报(自然科学版), 2020, 60(8): 683-692.
[11] 王磊, 匡麟玲, 黄惠明. 基于时空特征的中继卫星系统业务模型[J]. 清华大学学报(自然科学版), 2017, 57(1): 55-60,66.
[12] 倪顺江, 翁文国, 张辉. 大规模传染病传播围堵策略的模拟研究[J]. 清华大学学报(自然科学版), 2016, 56(1): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn