Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2021, Vol. 61 Issue (12): 1462-1471    DOI: 10.16511/j.cnki.qhdxxb.2020.25.039
  环境科学与工程 本期目录 | 过刊浏览 | 高级检索 |
秸秆直接还田与燃烧后还田对冬小麦田NO排放的影响
苏媛媛1,2, 王艳强3, 梅宝玲1, 姚志生2
1. 内蒙古大学 生态与环境学院, 呼和浩特 010021;
2. 中国科学院大气物理研究所 大气边界层物理和大气化学国家重点实验室, 北京 100029;
3. 中国科学院水利部成都山地灾害与环境研究所, 成都 610041
Effects of direct straw return and burning ash amendment on soil NO fluxes in a winter wheat cropland
SU Yuanyuan1,2, WANG Yanqiang3, MEI Baoling1, YAO Zhisheng2
1. School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China;
2. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
3. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
全文: PDF(1347 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为减少秸秆燃烧所造成的大气污染,国家鼓励农民施行秸秆直接还田措施。但是,秸秆还田会改变多种土壤理化因素,引起碳氮生物地球化学过程发生变化,进而可能改变环境污染性气体一氧化氮(NO)的产生和排放。为了探究秸秆不同还田方式如何影响冬小麦田NO排放,该文依托紫色土农业生态试验站的秸秆不同还田方式长期试验平台(2005年—),采用静态暗箱-化学发光法对农民常规施肥(NPK)、常规施肥+秸秆直接还田(NPK+SR)和常规施肥+秸秆燃烧后还田(NPK+SB)以及不施肥对照(CK)处理下的NO排放通量及辅助因子进行了一个完整生长季(2016年10月至2017年5月)观测。结果表明,各施肥处理下较高的NO排放均出现在施肥后1~2周内,与土壤无机氮含量变化趋势基本一致。在整个小麦生长季,土壤无机氮,尤其铵态氮(NH4+)浓度是NO季节变化动态的关键控制因子,二者呈显著线性正相关关系。与NPK相比,NPK+SB并未明显影响NO季节排放量,而NPK+SR却显著抑制了NO季节排放量的49.0%。基于施肥处理与CK处理之间NO排放量的差异,NPK、NPK+SB和NPK+SR处理的NO直接排放系数分别为0.33%、0.32%和0.15%。此外,与NPK相比,NPK+SB和NPK+SR提高了作物的氮肥利用效率,从而分别增加了小麦籽粒产量的18.9%和15.8%。依据土壤NO排放和小麦产量相结合的指标(即NO排放强度),NPK+SB比NPK显著降低了NO排放强度的19.7%,而NPK+SR比NPK+SB又进一步显著减少了NO排放强度的45.6%。因此,对于紫色土冬小麦田来说,秸秆直接还田处理是一种较好的优化施肥管理方式,可以同时满足保障粮食安全和减少大气环境污染性气体NO排放。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏媛媛
王艳强
梅宝玲
姚志生
关键词 NO排放排放系数小麦田秸秆还田秸秆燃烧    
Abstract:Returning straw to the soil rather than burning it can reduce negative environmental impacts such as air pollution. However, the incorporation of straw into the soil changes the soil physico-chemical properties, the biogeochemical C and N cycles and the associated environmental pollutant nitric oxide (NO) production and release. This study assessed how the soil NO fluxes respond to different methods of straw return in a winter wheat cropland. The assessment was based on measurements of the NO fluxes and auxiliary variables throughout the entire wheat-growing season (from October, 2016 to May, 2017) in a long-term purplish soil experimental platform with conventional fertilization (NPK), conventional fertilization + direct straw return (NPK+SR) and conventional fertilization + burning ash amendment (NPK+SB) as well as no nitrogen application as a control (CK) using a static opaque chamber and chemiluminescent analysis. The results showed pronounced NO peak fluxes with the fertilized treatments within the first 1-2 weeks after basal fertilization, which is comparable to the temporal trend of the soil mineral nitrogen. Thus, soil mineral nitrogen, specifically the soil ammonium (NH4+) concentration, is the key factor controlling the NO flux variations with soil NO fluxes strongly positively correlated with soil NH4+ concentrations. In comparison to NPK, NPK+SB did not significantly affect seasonal NO emissions, while NPK+SR greatly inhibited seasonal NO emissions by 49.0%. When the control emissions were deducted as background emissions, the direct NO emission factors were estimated to be 0.33%, 0.32% and 0.15% for NPK, NPK+SB and NPK+SR, respectively. Besides, both NPK+SB and NPK+SR treatment improve crop nitrogen use efficiency, and consequently enhancing wheat grain yields by 18.9% and 15.8%, respectively, comparing with NPK. The yield-scaled emissions (i.e., NO emission intensity) of NPK+SB were 19.7% less than those of NPK. Direct incorporation of the straw into the soil instead of burning further reduced the NO emission intensity from the winter wheat field by 45.6%. Therefore, for this winter wheat field, NPK+SR is recommended as the optimal fertilization management method which improves food security while reducing atmospheric pollutant NO emissions.
Key wordsNO emissions    emission factor    wheat field    straw return    straw burning
收稿日期: 2020-05-18      出版日期: 2021-12-11
基金资助:国家自然科学基金项目(41675144,41977282)
通讯作者: 姚志生,研究员,E-mail:zhishengyao@mail.iap.ac.cn     E-mail: zhishengyao@mail.iap.ac.cn
引用本文:   
苏媛媛, 王艳强, 梅宝玲, 姚志生. 秸秆直接还田与燃烧后还田对冬小麦田NO排放的影响[J]. 清华大学学报(自然科学版), 2021, 61(12): 1462-1471.
SU Yuanyuan, WANG Yanqiang, MEI Baoling, YAO Zhisheng. Effects of direct straw return and burning ash amendment on soil NO fluxes in a winter wheat cropland. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1462-1471.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.039  或          http://jst.tsinghuajournals.com/CN/Y2021/V61/I12/1462
  
  
  
  
[1] WILLIAMS E J, HUTCHINSON G L, FEHSENFELD F C. NOx and N2O emissions from soil[J]. Global Biogeochemical Cycles, 1992, 6(4):351-388.
[2] MEDINETS S, SKIBA U, RENNENBERG H, et al. A review of soil NO transformation:Associated processes and possible physiological significance on organisms[J]. Soil Biology and Biochemistry, 2015, 80:92-117.
[3] STOCKER T F, QIN D, PLATTNER G K, et al. Climate Change 2013:The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. New York, NY, USA:Cambridge University Press, 2013.
[4] DAVIDSON E A, KINGERLEE W. A global inventory of nitric oxide emissions from soils[J]. Nutrient Cycling in Agroecosystems, 1997, 48(1-2):37-50.
[5] CIAIS P, SABINE C, BALA L, et al. Climate Change 2013:The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[M]. New York, NY, USA:Cambridge University Press, 2013.
[6] STEHFEST E, BOUWMAN L. N2O and NO emission from agricultural fields and soils under natural vegetation:Summarizing available measurement data and modeling of global annual emissions[J]. Nutrient Cycling in Agroecosystems, 2006, 74(3):207-228.
[7] 中华人民共和国统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2019. National Bureau of Statistics of China. China statistical yearbook[M]. Beijing:China Statistics Press, 2019. (in Chinese)
[8] JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9):3041-3046.
[9] PATHAK H, SINGH R, BHATIA A, et al. Recycling of rice straw to improve wheat yield and soil fertility and reduce atmospheric pollution[J]. Paddy and Water Environment, 2006, 4(2):111-117.
[10] LAL R. Soil management in the developing countries[J]. Soil Science, 2000, 165(1):57-72.
[11] CUI F, ZHENG X H, LIU C Y, et al. Assessing biogeochemical effects and best management practice for a wheat-maize cropping system using the DNDC model[J]. Biogeosciences, 2014, 11(1):91-107.
[12] MALHI S S, LEMKE R, WANG Z H, et al. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions[J]. Soil and Tillage Research, 2006, 90(1-2):171-183.
[13] 蔡太义, 贾志宽, 孟蕾, 等. 渭北旱塬不同秸秆覆盖量对土壤水分和春玉米产量的影响[J]. 农业工程学报, 2011, 27(3):43-48. CAI T Y, JIA Z K, MENG L, et al. Effects of different rates of straw mulch on soil moisture and yield of spring maize in Weibei Highland area of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(3):43-48. (in Chinese)
[14] PINTO A D S, BUSTAMANTE M M C, KISSELLE K, et al. Soil emissions of N2O, NO, and CO2 in Brazilian Savannas:Effects of vegetation type, seasonality, and prescribed fires[J]. Journal of Geophysical Research Atmospheres, 2002, 107(D20):LBA 57-1-LBA 57-9.
[15] HOU A X, TSURUTA H. Nitrous oxide and nitric oxide fluxes from an upland field in Japan:Effect of urea type, placement, and crop residues[J]. Nutrient Cycling in Agroecosystems, 2003, 65(2):191-200.
[16] MEIJIDE A, GARCÍA-TORRES L, AUGUSTO A, et al. Nitrogen oxide emissions affected by organic fertilization in a non-irrigated Mediterranean barley field[J]. Agriculture, Ecosystems & Environment, 2009, 132(1-2):106-115.
[17] YAO Z S, YAN G X, ZHENG X H, et al. Straw return reduces yield-scaled N2O plus NO emissions from annual winter wheat-based cropping systems in the North China Plain[J]. Science of the Total Environment, 2017, 590-591:174-185.
[18] SERÇA D, DELMAS R, LE ROUX X, et al. Comparison of nitrogen monoxide emissions from several African tropical ecosystems and influence of season and fire[J]. Global Biogeochemical Cycles, 1998, 12(4):637-651.
[19] LIU C Y, WANG K, MENG S X, et al. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China[J]. Agriculture, Ecosystems & Environment, 2011, 140(1-2):226-233.
[20] YAO Z S, ZHENG X H, XIE B H, et al. Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation[J]. Soil Biology and Biochemistry, 2009, 41(10):2131-2140.
[21] ZHOU Z X, ZHENG X H, XIE B H, et al. Nitric oxide emissions from rice-wheat rotation fields in eastern China:Effect of fertilization, soil water content, and crop residue[J]. Plant and Soil, 2010, 336(1-2):87-98.
[22] CHEN H H, LI X C, HU F, et al. Soil nitrous oxide emissions following crop residue addition:A meta-analysis[J]. Global Change Biology, 2013, 19(10):2956-2964.
[23] XIA L L, LAM S K, WOLF B, et al. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems[J]. Global Change Biology, 2018, 24(12):5919-5932.
[24] MEI B L, ZHENG X H, XIE B H, et al. Nitric oxide emissions from conventional vegetable fields in southeastern China[J]. Atmospheric Environment, 2009, 43(17):2762-2769.
[25] YAMULKI S, GOULDING K W T, WEBSTER C P, et al. Studies on NO and N2O fluxes from a wheat field[J]. Atmospheric Environment, 1995, 29(14):1627-1635.
[26] SKIBA U, FOWLER D, SMITH K A. Nitric oxide emissions from agricultural soils in temperate and tropical climates:Sources, controls and mitigation options[J]. Nutrient Cycling in Agroecosystems, 1997, 48(1):139-153.
[27] LUDWIG J, MEIXNER F X, VOGEL B. Soil-air exchange of nitric oxide:An overview of processes, environmental factors, and modeling studies[J]. Biogeochemistry, 2001, 52(3):225-257.
[28] ZHENG X H, HUANG Y, WANG Y S, et al. Seasonal characteristics of nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period[J]. Global Change Biology, 2003, 9(2):219-227.
[29] ZHANG X, MENG F Q, LI H, et al. Optimized fertigation maintains high yield and mitigates N2O and NO emissions in an intensified wheat-maize cropping system[J]. Agricultural Water Management, 2019, 211:26-36.
[30] MEDINETS S, SKIBA U, RENNENBERG H, et al. A review of soil NO transformation:Associated processes and possible physiological significance on organisms[J]. Soil Biology and Biochemistry, 2015, 80:92-117.
[31] HE F F, JIANG R F, CHEN Q, et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China[J]. Environmental Pollution, 2009, 157(5):1666-1672.
[32] YAO Z S, LIU C Y, DONG H B, et al. Annual nitric and nitrous oxide fluxes from Chinese subtropical plastic greenhouse and conventional vegetable cultivations[J]. Environmental Pollution, 2015, 196:89-97.
[33] 蔡延江, 丁维新, 项剑. 农田土壤N2O和NO排放的影响因素及其作用机制[J]. 土壤, 2012, 44(6):881-887. CAI Y J, DING W X, XIANG J. Factors controlling N2O and NO emissions from agricultural soils and their influencing mechanisms:A review[J]. Soils, 2012, 44(6):881-887. (in Chinese)
[34] 胡廷旭, 刘韵, 柯韵, 等. 紫色土夏玉米-冬小麦轮作农田的NO排放特征[J]. 农业环境科学学报, 2015, 34(7):1407-1413. HU T X, LIU Y, KE Y, et al. Characteristics of NO emissions from purple soil under summer maize-winter wheat rotation[J]. Journal of Agro-Environment Science, 2015, 34(7):1407-1413. (in Chinese)
[35] 肖乾颖, 黄有胜, 胡廷旭, 等. 施肥方式对紫色土农田生态系统N2O和NO排放的影响[J]. 中国生态农业学报, 2018, 26(2):203-213. XIAO Q Y, HUANG Y S, HU T X, et al. Effects of fertilization regimes on N2O and NO emissions from agro-ecosystem of purplish soil[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2):203-213. (in Chinese)
[36] BOOUWMAN A F, BOUMANS L J M, BATJES N H. Modeling global annual N2O and NO emissions from fertilized fields[J]. Global Biogeochemical Cycles, 2002, 16(4):1080.
[37] 袁梦轩. 长期定位施肥对关中农田一氧化氮气体排放和总硝化速率的影响[D]. 咸阳:西北农林科技大学, 2018. YUAN M X. Effects of long-term fertilization on nitric oxide emissions and gross nitrification rates in agricultural soils in Guanzhong plain[D]. Xianyang:Northwest Agriculture and Forestry University, 2018. (in Chinese)
[38] MEI B L, ZHENG X H, XIE B H, et al. Characteristics of multiple-year nitrous oxide emissions from conventional vegetable fields in southeastern China[J]. Journal of Geophysical Research:Atmospheres, 2011, 116(D12):D12113.
[39] ZHANG Y J, LIN F, JIN Y G, et al. Response of nitric and nitrous oxide fluxes to N fertilizer application in greenhouse vegetable cropping systems in southeast China[J]. Scientific Reports, 2016, 6(1):20700.
[40] LIU C Y, YAO Z S, WANG K, et al. Effects of increasing fertilization rates on nitric oxide emission and nitrogen use efficiency in low carbon calcareous soil[J]. Agriculture, Ecosystems & Environment, 2015, 203:83-92.
[41] ZHANG X, MENG F Q, LI H, et al. Optimized fertigation maintains high yield and mitigates N2O and NO emissions in an intensified wheat-maize cropping system[J]. Agricultural Water Management, 2019, 211:26-36.
[42] YAO Z S, ZHENG X H, WANG R, et al. Greenhouse gas fluxes and NO release from a Chinese subtropical rice-winter wheat rotation system under nitrogen fertilizer management[J]. Journal of Geophysical Research:Biogeosciences, 2013, 118(2):623-638.
[43] HUANG Y, LI D J. Soil nitric oxide emissions from terrestrial ecosystems in China:A synthesis of modeling and measurements[J]. Scientific Reports, 2014, 4(1):7406.
[44] KESIK M, BLAGODATSKY S, PAPEN H, et al. Effect of pH, temperature and substrate on N2O, NO and CO2 production by Alcaligenes faecalis p.[J]. Journal of Applied Microbiology, 2006, 101(3):655-667.
[45] ANDERSON I C, LEVINE J S. Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide[J]. Journal of Geophysical Research:Atmospheres, 1987, 92(D1):965-976.
[46] SKIBA U, SMITH K A, FOWLER D. Nitrification and denitrification as sources of nitric oxide and nitrous oxide in a sandy loam soil[J]. Soil Biology and Biochemistry, 1993, 25(11):1527-1536.
[47] KRAVCHENKO A N, TOOSI E R, GUBER A K, et al. Hotspots of soil N2O emission enhanced through water absorption by plant residue[J]. Nature Geoscience, 2017, 10(7):496-500.
[48] VAN GROENIGE J W, VELTHOF G L, OENEMA O, et al. Towards an agronomic assessment of N2O emissions:A case study for arable crops[J]. European Journal of Soil Science, 2010, 61(6):903-913.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn