Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (1): 125-132    DOI: 10.16511/j.cnki.qhdxxb.2021.21.030
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
微小加速度下汽车质量-道路坡度自适应估计
孙恩鑫1, 殷玉明2, 辛喆1, 李升波3, 何举刚4, 孔周维4, 刘秀鹏4
1. 中国农业大学 工学院, 北京 100083;
2. 浙江工业大学 机械工程学院, 杭州 310023;
3. 清华大学 汽车工程系, 北京 100084;
4. 重庆长安汽车股份有限公司, 重庆 400023
Adaptive joint estimates of vehicle mass and road grades for small acceleration driving scenarios
SUN Enxin1, YIN Yuming2, XIN Zhe1, LI Shengbo3, HE Jugang4, KONG Zhouwei4, LIU Xiupeng4
1. College of Engineering, China Agricultural University, Beijing 100083, China;
2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China;
3. Department of Automotive Engineering, Tsinghua University, Beijing 100084, China;
4. Chongqing Chang'an Automobile Co., Ltd., Chongqing 400023, China
全文: PDF(8235 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 汽车质量和道路坡度是设计高性能汽车决策和控制算法所需的基本参数。但是,微小加速度行驶工况下,汽车纵向惯性力较小,汽车质量和道路坡度难解耦,且现有估计算法的准确性和收敛速度有待进一步提高。该文提出了一种基于车辆纵向动力学原理的自适应无迹Kalman滤波(adaptive unscented Kalman filter,AUKF)算法,通过加大质量预测模型初始噪声,并设计自适应收缩系数对预测误差协方差矩阵进行动态调整,实现了微小加速度工况下汽车质量和道路坡度的快速准确联合估计。其中,自适应收缩系数与质量预测模型噪声和质量估计值有关。不同初始条件下的仿真与实车试验结果表明,AUKF算法能准确估计汽车质量和道路坡度,且质量估计误差均小于3%,道路坡度估计均方根误差均小于0.4°。此外,在纵向加速度小于0.3 m/s2行驶工况下,相比经典UKF算法,AUKF算法极大加快了汽车质量和道路坡度估计的收敛速度,在质量初始误差小于40%条件下,质量误差收敛至3%以内只需约10 s。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙恩鑫
殷玉明
辛喆
李升波
何举刚
孔周维
刘秀鹏
关键词 汽车质量道路坡度无迹Kalman滤波自适应滤波    
Abstract:Vehicle mass and the road grade are key input parameters for automated vehicle decision and control algorithms. These two parameters are difficult to know accurately, but are tightly coupled for small acceleration driving scenarios with small inertias. The accuracy and convergence speed of existing estimation algorithms need to be further improved. A vehicle dynamics model is used here with an adaptive unscented Kalman filter (AUKF) algorithm for rapid, accurate joint estimates of the vehicle mass and road grade during small acceleration scenarios. The prediction model has a large initial mass noise with an adaptive shrink coefficient designed to adjust the prediction error covariance matrices. The adaptive shrink coefficient is related to the estimation result and the prediction error covariance matrices. Simulations and vehicle tests for various initial conditions show that the AUKF algorithm can accurately estimate the vehicle mass and road grade with an estimated vehicle mass error of less than 3% and a root-mean-square error in the road grade of less than 0.4°. In addition, the AUKF algorithm gives better convergence speeds for the vehicle mass and road grade estimates with longitudinal accelerations less than 0.3 m/s2 than the traditional UKF algorithm. When the initial mass error is within 40%, the estimated mass error converges to less than 3% within 10 seconds.
Key wordsvehicle mass    road grade    unscented Kalman filter    adaptive filter
收稿日期: 2020-03-15      出版日期: 2022-01-14
基金资助:国家自然科学基金青年科学基金项目(51905483);国家国际科技合作项目(2019YFE0100200)
通讯作者: 辛喆,教授,E-mail:xinzhe@cau.edu.cn     E-mail: xinzhe@cau.edu.cn
引用本文:   
孙恩鑫, 殷玉明, 辛喆, 李升波, 何举刚, 孔周维, 刘秀鹏. 微小加速度下汽车质量-道路坡度自适应估计[J]. 清华大学学报(自然科学版), 2022, 62(1): 125-132.
SUN Enxin, YIN Yuming, XIN Zhe, LI Shengbo, HE Jugang, KONG Zhouwei, LIU Xiupeng. Adaptive joint estimates of vehicle mass and road grades for small acceleration driving scenarios. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 125-132.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.21.030  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I1/125
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 李升波, 关阳, 侯廉, 等. 深度神经网络的关键技术及其在自动驾驶领域的应用[J]. 汽车安全与节能学报, 2019, 10(2):119-145. LI S B, GUAN Y, HOU L, et al. Key technique of deep neural network and its applications in autonomous driving[J]. Journal of Automotive Safety and Energy, 2019, 10(2):119-145. (in Chinese)
[2] WANG G Y, LI S B. A novel longitudinal speed estimator for fully automation ground vehicle on cornering maneuver[C]//2009 International Conference on Artificial Intelligence and Computational Intelligence. Shanghai, China:IEEE Press, 2009:433-437.
[3] XU S B, LI S E, CHENG B, et al. Instantaneous feedback control for a fuel-prioritized vehicle cruising system on highways with a varying slope[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5):1210-1220.
[4] LI S E, GUO Q Q, XU S B, et al. Performance enhanced predictive control for adaptive cruise control system considering road elevation information[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(3):150-160.
[5] KIM I, KIM H, BANG J, et al. Development of estimation algorithms for vehicle's mass and road grade[J]. International Journal of Automotive Technology, 2013, 14(6):889-895.
[6] KIM D, CHOI S B, CHOI M. Integrated vehicle mass estimation for vehicle safety control using the recursive least-squares method and adaptation laws[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2015, 229(1):14-24.
[7] ZHENG H Y, MA S N, LIU Y H. Vehicle braking force distribution with electronic pneumatic braking and hierarchical structure for commercial vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2018, 232(4):481-493.
[8] KAROSHI P, AGER M, SCHABAUER M, et al. Robust and numerically efficient estimation of vehicle mass and road grade[C]//Advanced Microsystems for Automotive Applications 2017. Cham, Switzerland:Springer International Publishing, 2018:87-100.
[9] KIDAMBI N, HARNE R L, FUJII Y, et al. Methods in vehicle mass and road grade estimation[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2014, 7(3):981-991.
[10] REZAEIAN A, ZARRINGHALAM R, FALLAH S, et al. Cascaded dual extended Kalman filter for combined vehicle state estimation and parameter identification[R]. Massachusetts, America:Harvard University Press, 2013.
[11] 褚文博, 罗禹贡, 罗剑, 等. 电驱动车辆的整车质量与路面坡度估计[J]. 清华大学学报(自然科学版), 2014, 54(6):724-728. CHU W B, LUO Y G, LUO J, et al. Vehicle mass and road slope estimates for electric vehicles[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(6):724-728. (in Chinese)
[12] KIM S, SHIN K, YOO C, et al. Development of algorithms for commercial vehicle mass and road grade estimation[J]. International Journal of Automotive Technology, 2017, 18(6):1077-1083.
[13] KIDAMBI N, PIETRON G M, BOESCH M, et al. Accuracy and robustness of parallel vehicle mass and road grade estimation[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2017, 1(2):317-325.
[14] LIU C, LI S E, HEDRICK J K. Measurement dissemination-based distributed Bayesian filter using the latest-in-and-full-out exchange protocol for networked unmanned vehicles[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11):8756-8766.
[15] LIU C, EBEN LI S, YANG D G, et al. Distributed Bayesian filter using measurement dissemination for multiple unmanned ground vehicles with dynamically changing interaction topologies[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(3):030903.
[16] ANDERSON B D O, MOORE J B. Optimal filtering[M]. Newyork, USA:Courier Corporation, 2012.
[17] LI S E, LI G F, YU J Y, et al. Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles[J]. Mechanical Systems and Signal Processing, 2018, 98:173-189.
[1] 李睿, 李春明, 苏杰, 陈亮, 秦兆博, 边有钢. 考虑轨迹预测补偿的履带车辆滑动参数估计方法[J]. 清华大学学报(自然科学版), 2022, 62(1): 133-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn