Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (2): 199-207    DOI: 10.16511/j.cnki.qhdxxb.2022.22.003
  专题:建设管理 本期目录 | 过刊浏览 | 高级检索 |
基于BIM和数据驱动的智能运维管理方法
胡振中1, 冷烁2, 袁爽2
1. 清华大学 深圳国际研究生院, 深圳 518055;
2. 清华大学 土木工程系, 北京 100084
BIM-based, data-driven method for intelligent operation and maintenance
HU Zhenzhong1, LENG Shuo2, YUAN Shuang2
1. Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
2. Department of Civil Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(5632 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 建筑信息模型(BIM)的普及提升了建筑运维管理的效率。然而,基于BIM的智能运维仍在数据获取、管理与分析方面面临挑战。该文结合BIM和数据驱动技术,研究了智能运维管理的方法,包括:通过机电设备逻辑关系的自动生成,实现对运维BIM信息的扩充增强;通过提出数据立方模型,实现基于BIM的动态运维信息管理;以及结合聚类、频繁模式挖掘与神经网络等多种机器学习方法,实现对上述运维数据的挖掘分析,辅助智能运维决策。该研究成果有效地减少了运维人员工作负担、提高了运维数据价值,有助于提升运维管理智能化水平。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡振中
冷烁
袁爽
关键词 运维管理建筑信息模型(BIM)数据驱动智能建筑数据挖掘    
Abstract:Building information models (BIM) provide improved building operation and maintenance (O&M) efficiencies. However, BIM-based intelligent O&M still faces challenges related to data acquisition, integration and analysis. This paper combines BIM and data-driven techniques to develop a solution for intelligent O&M. This approach includes a method to identify upstream and downstream relationships among mechanical, electrical and plumbing (MEP) facilities to supplement the O&M information in BIM. A data cube model is then used to integrate the BIM and building information. Multiple data mining methods including clustering, frequent pattern discovery and neural networks are then used to analyze the O&M data and assist intelligent decision-making. This method reduces the O&M personnel workload, increases the O&M data value, and improves the intelligence level of the O&M management.
Key wordsoperation and maintenance management    building information model (BIM)    data-driven    intelligent buildings    data mining
收稿日期: 2021-08-14      出版日期: 2022-01-22
基金资助:国家自然科学基金项目(51778336);深圳市科技研发基金项目(WDZC20200819174646001)
作者简介: 胡振中(1983-),男,副教授。E-mail:huzhenzhong@tsinghua.edu.cn
引用本文:   
胡振中, 冷烁, 袁爽. 基于BIM和数据驱动的智能运维管理方法[J]. 清华大学学报(自然科学版), 2022, 62(2): 199-207.
HU Zhenzhong, LENG Shuo, YUAN Shuang. BIM-based, data-driven method for intelligent operation and maintenance. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 199-207.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.22.003  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I2/199
  
  
  
  
  
  
  
  
  
[1] PAN Y J, LIU X G, CAI D G, et al. Research on correlation of railway bridge BIM model and full life cycle information oriented to operation and maintenance[J]. China Railway, 2020(5):73-80. (in Chinese)潘永杰, 刘晓光, 蔡德钩, 等. 面向运维的铁路桥梁BIM模型及全生命周期信息关联研究[J]. 中国铁路, 2020(5):73-80.
[2] LI Q, XU G Q, WEI H M. Research on the operations management system of utility tunnel based on BIM[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(2):287-292. (in Chinese)李芊, 许高强, 韦海民. 基于BIM的综合管廊运维管理系统研究[J]. 地下空间与工程学报, 2018, 14(2):287-292.
[3] YIN X F, LIU H X, CHEN Y, et al. A BIM-based framework for operation and maintenance of utility tunnels[J]. Tunnelling and Underground Space Technology, 2020, 97:103252.
[4] HU Z Z, PENG Y, TIAN P L. A review for researches and applications of BIM-based operation and maintenance management[J]. Journal of Graphics, 2015, 36(5):802-810. (in Chinese)胡振中, 彭阳, 田佩龙. 基于BIM的运维管理研究与应用综述[J]. 图学学报, 2015, 36(5):802-810.
[5] GAO X H, PISHDAD-BOZORGI P. BIM-enabled facilities operation and maintenance:A review[J]. Advanced Engineering Informatics, 2019, 39:227-247.
[6] ZHANG Y. Research overview on BIM operation and maintenance management in China[J]. Urbanism and Architecture, 2020, 17(30):191-193. (in Chinese)张阳. 基于国内BIM运维管理研究综述[J]. 城市建筑, 2020, 17(30):191-193.
[7] DANIOTTI B, PAVAN A, SPAGNOLO S L, et al. Benefits and challenges using BIM for operation and maintenance[M]//DANIOTTI B, PAVAN A, SPAGNOLO S L, et al. BIM-based collaborative building process management. Cham, Switzerland:Springer, 2020:167-181.
[8] AHMED S. Barriers to implementation of building information modeling (BIM) to the construction industry:A review[J]. Journal of Civil Engineering and Construction, 2018, 7(2):107-113.
[9] LIU S J, XIE B Z, TIVENDAL L, et al. Critical barriers to BIM implementation in the AEC industry[J]. International Journal of Marketing Studies, 2015, 7(6):162-171.
[10] CAO H. Study on BIM delivery standard in Jiangxi Province[D]. Nanchang:Nanchang University, 2019. (in Chinese)曹辉. 江西省BIM交付标准研究[D]. 南昌:南昌大学, 2019.
[11] CAVKA H B, STAUB-FRENCH S, POIRIER E A. Developing owner information requirements for BIM-enabled project delivery and asset management[J]. Automation in Construction, 2017, 83:169-183.
[12] HU Z Z, TIAN P L, LI S W, et al. BIM-based integrated delivery technologies for intelligent MEP management in the operation and maintenance phase[J]. Advances in Engineering Software, 2018, 115:1-16.
[13] XIAO Y Q, LI S W, HU Z Z. Automatically generating a MEP logic chain from building information models with identification rules[J]. Applied Sciences, 2019, 9(11):2204.
[14] TANG S, SHELDEN D R, EASTMAN C M, et al. A review of building information modeling (BIM) and the Internet of things (IoT) devices integration:Present status and future trends[J]. Automation in Construction, 2019, 101:127-139.
[15] SOORIYARACHCHI M P, KARUNASENA G. Information technology usage in building operation & maintenance management[C]//15th International Research Conference on Management and Finance (IRCMF). Colombo, Sri Lanka, 2020:9-18.
[16] YUAN S, HU Z Z, LIN J R, et al. A framework for the automatic integration and diagnosis of building energy consumption data[J]. Sensors, 2021, 21(4):1395.
[17] LIN J R, HU Z Z, LI J L, et al. Understanding on-site inspection of construction projects based on keyword extraction and topic modeling[J]. IEEE Access, 2020, 8:198503-198517.
[18] DAVE B, BUDA A, NURMINEN A, et al. A framework for integrating BIM and IoT through open standards[J]. Automation in Construction, 2018, 95:35-45.
[19] CHENG J C P, CHEN W W, CHEN K Y, et al. Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms[J]. Automation in Construction, 2020, 112:103087.
[20] CHANG K M, DZENG R J, WU Y J. An automated IoT visualization BIM platform for decision support in facilities management[J]. Applied Sciences, 2018, 8(7):1086.
[21] LENG S, HU Z Z. A review of BIM-based artificial intelligence methods[J]. Journal of Graphics, 2018, 39(5):797-805. (in Chinese)冷烁, 胡振中. 基于BIM的人工智能方法综述[J]. 图学学报, 2018, 39(5):797-805.
[22] CHENG B Q, LI J W, TAM V W Y, et al. A BIM-LCA approach for estimating the greenhouse gas emissions of large-scale public buildings:A case study[J]. Sustainability, 2020, 12(2):685.
[23] ZHANG X F. Research on building BIM energy consumption prediction algorithm based on wavelet neural network[J]. Machine Tool & Hydraulics, 2018, 46(24):42-47, 93.
[24] PENG Y, LI S W, HU Z Z. A self-learning dynamic path planning method for evacuation in large public buildings based on neural networks[J]. Neurocomputing, 2019, 365:71-85.
[25] PAN Y, ZHANG L M. A BIM-data mining integrated digital twin framework for advanced project management[J]. Automation in Construction, 2021, 124:103564.
[26] ZHU L J, MA B X, ZHAO X Q. Clustering validity analysis based on silhouette coefficient[J]. Journal of Computer Applications, 2010, 30(S2):139-141, 198. (in Chinese)朱连江, 马炳先, 赵学泉. 基于轮廓系数的聚类有效性分析[J]. 计算机应用, 2010, 30(S2):139-141, 198.
[27] AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in large databases[C]//Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco, USA:Morgan Kaufmann Publishers, 1994:487-499.
[28] DENG M, MENASSA C C, KAMAT V R. From BIM to digital twins:A systematic review of the evolution of intelligent building representations in the AEC-FM industry[J]. Journal of Information Technology in Construction, 2021, 26:58-83.
[1] 贺胜, 疏学明, 胡俊, 张雷, 张伽, 张嘉乐, 周扬. 基于消防大数据的电气火灾风险预测预警方法[J]. 清华大学学报(自然科学版), 2024, 64(3): 478-491.
[2] 刘广宇, 安芃, 伍震, 胡振中. 基于本体的公路工程安全领域知识建模和应用[J]. 清华大学学报(自然科学版), 2024, 64(2): 224-234.
[3] 范晓亮, 彭朝鹏, 郑传潘, 王程. 面向大规模交通网络的时空关联挖掘方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1317-1325.
[4] 曹新颖, 孟凡凡, 李小冬. 基于精益管理的装配式建造过程返工风险智能识别[J]. 清华大学学报(自然科学版), 2023, 63(2): 201-209.
[5] 刘涛, 杨开明, 朱煜. 光刻机工件台前馈补偿器参数整定方法[J]. 清华大学学报(自然科学版), 2023, 63(10): 1640-1649.
[6] 郭红领, 叶啸天, 任琦鹏, 罗柱邦. 基于BIM和规则推理的施工进度计划自动编排[J]. 清华大学学报(自然科学版), 2022, 62(2): 189-198.
[7] 魏泽洋, 刘毅, 王春艳, 张佳, 边江, 姚琳洁, 林斯杰, EWEKaijie. 环境计算:概念、发展与挑战[J]. 清华大学学报(自然科学版), 2022, 62(12): 1839-1850.
[8] 喻宏伟, 周东波, 徐雯慧, 余雅滢, 王小梅, 涂悦. 基于多片段语义时空图卷积网络的大学生校园日常行为预测[J]. 清华大学学报(自然科学版), 2022, 62(1): 105-115.
[9] 李钧毅, 王丽珍, 陈红梅. dGridTopk-FCPM:一种基于模糊理论和d-网格的Top-k空间co-location模式挖掘方法[J]. 清华大学学报(自然科学版), 2021, 61(9): 943-952.
[10] 郭红领, 周颖, 叶啸天, 罗柱邦, 薛帆. IFC数据模型至关系型数据库模型的自动映射[J]. 清华大学学报(自然科学版), 2021, 61(2): 152-160.
[11] 王晓旭, 王丽珍, 王家龙. 交通数据的时空并置模糊拥堵模式挖掘[J]. 清华大学学报(自然科学版), 2020, 60(8): 683-692.
[12] 林佳瑞, 郭建锋. 基于BIM的合规性自动审查[J]. 清华大学学报(自然科学版), 2020, 60(10): 873-879.
[13] 林佳瑞, 张建平. 基于IFC的绿色性能分析数据转换与共享[J]. 清华大学学报(自然科学版), 2016, 56(9): 997-1002.
[14] 刘强, 张建平, 胡振中. 基于键-值缓存的IFC模型Web应用技术[J]. 清华大学学报(自然科学版), 2016, 56(4): 348-353,359.
[15] 江汉臣, 林鹏, 强茂山. 基于实时定位系统的监理人员管理和评价[J]. 清华大学学报(自然科学版), 2015, 55(9): 950-956,963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn