Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (2): 303-311    DOI: 10.16511/j.cnki.qhdxxb.2021.26.022
  能源与动力工程 本期目录 | 过刊浏览 | 高级检索 |
高压氢气射流火焰的数值模拟
巴清心1, 赵明斌1, 赵泽滢1, 黄腾1, 王建强2, 李雪芳1, 肖国萍2
1. 山东大学 热科学与工程研究中心, 济南 250061;
2. 中国科学院上海应用物理研究所, 上海 201800
Modeling of high pressure hydrogen jet fires
BA Qingxin1, ZHAO Mingbin1, ZHAO Zeying1, HUANG Teng1, WANG Jianqiang2, LI Xuefang1, XIAO Guoping2
1. Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China;
2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
全文: PDF(11109 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 高压氢气泄漏并发生点火是氢火灾事故的核心场景,也是氢安全研究的基本内容。该文对高压氢气泄漏后立即点火、延迟点火以及有防护墙存在时的延时点火3种场景进行了数值模拟仿真,分析了点火时间、防护墙对温度和超压的影响。结果表明:氢气泄漏后在喷口处立即点燃会形成射流火焰,该过程不会产生明显的超压;泄漏一段时间后再进行点火,将由点火中心产生压力波并向外传播,并随着与点火中心距离的增大,最大超压降低,燃烧稳定后形成的射流火焰与立即点火时基本一致;防护墙有效削弱了压力波及火焰向墙后方的传播,墙后方的超压及温度明显降低。因此,合理设置防护墙可以缩小危险范围,缩短安全距离。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
巴清心
赵明斌
赵泽滢
黄腾
王建强
李雪芳
肖国萍
关键词 氢安全高压氢气泄漏射流火焰延迟点火防护墙    
Abstract:Unintended high pressure hydrogen releases and ignition are key scenarios in hydrogen accidents, so they are basic topics of hydrogen safety research. This study modeled three hydrogen fire scenarios including immediate ignition, delayed ignition, and delayed ignition with a barrier wall. The analyses predicted the temperature and pressure distributions for each scenario. The results show that immediate ignition of the released hydrogen resulted in a steady jet fire without significant overpressure. Delayed ignition caused a pressure wave at the ignition location that spread outward. The jet fire for delayed ignition was similar as that for immediate ignition after the fire stabilized. The overpressure decreased with distance from the ignition location. The barrier wall weakened the spread of the pressure waves and the flames with significantly lower overpressures and temperatures behind the wall. Therefore, barrier walls should be used to reduce hazardous areas and shorten separation distances.
Key wordshydrogen safety    high pressure hydrogen release    jet fire    delayed ignition    barrier wall
收稿日期: 2021-01-27      出版日期: 2022-01-22
基金资助:国家自然科学基金资助项目(51706125);中科院青年创新促进会项目(2018298)
通讯作者: 李雪芳,副教授,E-mail:lixf@email.sdu.edu.cn;肖国萍,高级工程师,E-mail:xiaoguoping@sinap.ac.cn      E-mail: lixf@email.sdu.edu.cn;xiaoguoping@sinap.ac.cn
作者简介: 巴清心(1990-),女,博士研究生
引用本文:   
巴清心, 赵明斌, 赵泽滢, 黄腾, 王建强, 李雪芳, 肖国萍. 高压氢气射流火焰的数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(2): 303-311.
BA Qingxin, ZHAO Mingbin, ZHAO Zeying, HUANG Teng, WANG Jianqiang, LI Xuefang, XIAO Guoping. Modeling of high pressure hydrogen jet fires. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 303-311.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.022  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I2/303
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] APAK S, ATAY E, TUNCER G. Renewable hydrogen energy and energy efficiency in Turkey in the 21st century[J]. International Journal of Hydrogen Energy, 2017, 42(4):2446-2452.
[2] BARBIR F. Transition to renewable energy systems with hydrogen as an energy carrier[J]. Energy, 2009, 34(3):308-312.
[3] PANWAR N L, KAUSHIK S C, KOTHARI S. Role of renewable energy sources in environmental protection:A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3):1513-1524.
[4] CHANG L, NI W D, LI Z, et al. Selection of best hydrogen transport mode in the hydrogen supply chain[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(2):257-260. (in Chinese)常乐, 倪维斗, 李政, 等. 氢能供应链中最佳运氢方式的选择[J]. 清华大学学报(自然科学版), 2009, 49(2):257-260.
[5] SCHEFER R W, HOUF W G, BOURNE B, et al. Spatial and radiative properties of an open-flame hydrogen plume[J]. International Journal of Hydrogen Energy, 2006, 31(10):1332-1340.
[6] MOGI T, HORIGUCHI S. Experimental study on the hazards of high-pressure hydrogen jet diffusion flames[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1):45-51.
[7] BRENNAN S L, MAKAROV D V, MOLKOV V. LES of high pressure hydrogen jet fire[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3):353-359.
[8] FU J J, WANG C J, QIN J, et al. Large eddy simulation of hydrogen jet fire[J]. Journal of Combustion Science and Technology, 2013, 19(5):473-477. (in Chinese)付佳佳, 王昌建, 秦俊, 等. 氢气喷射火的大涡模拟[J]. 燃烧科学与技术, 2013, 19(5):473-477.
[9] FU J J. Large eddy simulation of hydrogen jet fire based on OpenFOAM platform[D]. Hefei:University of Science and Technology of China, 2013. (in Chinese)付佳佳. 基于OpenFOAM平台下氢气喷射火的大涡模拟[D]. 合肥:中国科学技术大学, 2013.
[10] SHIRVILL L C, ROBERTS T A. Designing for safe operations:Understanding the hazards posed by high-pressure leaks from hydrogen refueling systems[C]//USA National Hydrogen Association Annual Hydrogen Conference. Long Beach, USA, 2006.
[11] SCHEFER, R W, GROETHE, M, HOUF, W G, et al. Experimental evaluation of barrier walls for risk reduction of unintended hydrogen releases[J]. International Journal of Hydrogen Energy 2009, 34(3):1590-1606.
[12] TANAKA T, AZUMA T, EVANS J A, et al. Experimental study on hydrogen explosions in a full-scale hydrogen filling station model[J]. International Journal of Hydrogen Energy, 2007, 32(13):2162-2170.
[13] DIOP S, AGRAWAL A, SCHEFER R. A parametric study of jet-wall interactions for compressed hydrogen gas leak scenarios[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, USA:AIAA, 2009.
[14] LI X F, HE J, CHRISTOPHER D M, et al, Validation of flow partitioning model for high pressure hydrogen jets through small orifices[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(12):1095-1100. (in Chinese)李雪芳, 何倩, 柯道友, 等. 高压氢气小孔泄漏射流分层流动模型与验证[J]. 清华大学学报(自然科学版). 2018, 58(12):1095-1100.
[15] THRING M, NEWBY M. Combustion length of enclosed turbulent jet flames[J]. Symposium (International) on Combustion, 1953, 4(1):789-796.
[16] BIRCH A, BROWN D, DODSON M, et al. The structure and concentration decay of high pressure jets of natural gas[J]. Combustion Science and Technology, 1984, 36(5-6):249-261.
[17] BIRCH A, HUGHES D, SWAFFIELD F. Velocity decay of high pressure jets[J]. Combustion Science and Technology, 1987, 52(1-3):161-171.
[18] EWAN B, MOODIE K. Structure and velocity measurements in underexpanded jets[J]. Combustion Science and Technology, 1986, 45(5-6):275-288.
[19] YUCEIL K B, OTUGEN M V. Scaling parameters for underexpanded supersonic jets[J]. Physics of Fluids, 2002, 14(12):4206-4215.
[20] PAPANIKOLAOU E, BARALDI D, KUZNETSOV M, et al. Evaluation of notional nozzle approaches for CFD simulations of free-shear under-expanded hydrogen jets[J]. International Journal of Hydrogen Energy, 2012, 37(23):18563-18574.
[21] MAKAROV D, MOLFEOU V. Plane hydrogen jets[J]. International Journal of Hydrogen Energy, 2013, 38(19):8068-8083.
[22] LI Z Y, PAN X M, LUO Y Y, et al. Comparison of determination approaches of safety distances for hydrogen infrastructure[J]. Acta Energiae Solaris Sinica, 2013(8):1492-1498. (in Chinese)李志勇, 潘相敏, 罗义英, 等. 氢能基础设施安全距离确定方法的比较与分析[J]. 太阳能学报, 2013(8):1492-1498.
[1] 李丹, 吕海陆, 张扬, 张海, 周托, 吕俊复. 来流预混均匀性对湍流射流火焰回火特性的影响[J]. 清华大学学报(自然科学版), 2023, 63(4): 560-571.
[2] 刘贵军, 刘佳悦, 张扬, 吴玉新. 湍流热伴流中氢气与乙炔射流自着火实验[J]. 清华大学学报(自然科学版), 2023, 63(4): 594-602.
[3] 李雪芳, 何倩, 柯道友, 程林. 高压氢气小孔泄漏射流分层流动模型与验证[J]. 清华大学学报(自然科学版), 2018, 58(12): 1095-1100.
[4] 吴韶华,张健. 湍流预混射流火焰直接模拟中入口条件的确定[J]. 清华大学学报(自然科学版), 2014, 54(6): 834-838.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn