Reinterpretation of a thermal environment evaluation index “standard effective temperature (SET)”
JI Wenjie1,2, DU Heng3, ZHU Yingxin2, CAO Bin2, LIAN Zhiwei3, LIU Shuli1, YANG Changzhi4
1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. School of Architecture, Tsinghua University, Beijing 100084, China; 3. School of Design, Shanghai Jiao Tong University, Shanghai 200240, China; 4. School of Civil Engineering, Hunan University, Changsha 410082, China
Abstract:The standard effective temperature (SET) is an evaluation index based on the two-node thermal physiological model which has been widely used to evaluate thermal comfort. However, the SET is often misused due to misunderstanding the SET equivalent standard environment and differences in some key parameters. This study summarizes the development of the SET index and then reinterprets this index based on Gagge's definition in the 1986 version to correct the misunderstanding of the standard SET environment. In addition, the equivalent standard environment parameters vary with the metabolic rate. The SET calculational method is revised here to correct these problems with guidelines for future applications of the SET index.
纪文杰, 杜衡, 朱颖心, 曹彬, 连之伟, 刘淑丽, 杨昌智. 对热环境评价指标“标准有效温度SET”的重新解读[J]. 清华大学学报(自然科学版), 2022, 62(2): 331-338.
JI Wenjie, DU Heng, ZHU Yingxin, CAO Bin, LIAN Zhiwei, LIU Shuli, YANG Changzhi. Reinterpretation of a thermal environment evaluation index “standard effective temperature (SET)”. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 331-338.
[1] GAGGE A P, NISHI Y, GONZALEZ R R. Standard effective temperature:A single temperature index of temperature sensation and thermal discomfort[C]//Proceedings of CIB Commission W45(Human Requirements), Symposium at the Building Research Station. London, UK, 1972:229-250. [2] GAGGE A P, STOLWIJK J A J, NISHI Y. An effective temperature scale based on a simple model of human physiological regulatory response[J]. ASHRAE Transactions, 1971, 77(1):247-262. [3] GONZALEZ R R, NISHI Y, GAGGE A P. Experimental evaluation of standard effective temperature a new biometeorological index of man's thermal discomfort[J]. International Journal of Biometeorology, 1974, 18(1):1-15. [4] GAGGE A P. Rational temperature indices of man's thermal environment and their use with a 2-node model of his temperature regulation[J]. Federation Proceedings, 1973, 32(5):1572-1582. [5] NISHI Y, GAGGE A P. Effective temperature scale useful for hypo-and hyperbaric environments[J]. Aviation Space and Environmental Medicine, 1977, 48(2):97-107. [6] GAGGE A P. Chapter 5 rational temperature indices of thermal comfort[J]. Studies in Environmental Science, 1981, 10:79-98. [7] GAGGE A P, FOBELETS A P, BERGLUND L G. A standard predictive index of human response to the thermal environment[J]. ASHRAE Transactions, 1986, 92(2B):709-731. [8] FANGER P O. Thermal comfort:Analysis and applications in environmental engineering[M]. Copenhagen, Denmark:Danish Technology Press, 1970. [9] ANSI, ASHRAE. ASHRAE standard:Thermal environmental conditions for human occupancy:ANSI/ASHRAE55-2017[S]. Atlanta, USA:ASHRAE, 2017. [10] TAKADA S, SAKIYAMA T, MATSUSHITA T. Validity of the two-node model for predicting steady-state skin temperature[J]. Building and Environment, 2011, 46(3):597-604. [11] MOCHIDA T, SAKOI T. PMV:Its originality and characteristics[J]. Journal of the Human-Environment System, 2003, 6(2):61-67. [12] MOCHIDA T. Fundamental study regarding the characteristics of wettedness under constant average skin temperature[J]. The Annals of Physiological Anthropology, 1993, 12(2):59-69. [13] WANG M N. Study on two-node human thermal regulation model in low atmospheric pressure environment[D]. Qingdao:Qingdao University of Technology, 2013. (in Chinese)王美楠. 低气压环境下二节点人体热调节模型研究[D]. 青岛:青岛理工大学, 2013. [14] WANG H Y, WANG M N, HU S T, et al. Calculation of standard effective temperature and comfortable zone in low pressure environment[J]. Heating Ventilating & Air Conditioning, 2014, 44(10):22-25. (in Chinese)王海英, 王美楠, 胡松涛, 等. 低气压环境下标准有效温度与舒适区的计算[J]. 暖通空调, 2014, 44(10):22-25. [15] FAN J P. A new numerical simulation model for standard effective temperature[D]. San Diego, USA:University of California, 2015. [16] MAZON J. The influence of thermal discomfort on the attention index of teenagers:An experimental evaluation[J]. International Journal of Biometeorology, 2014, 58(5):717-724. [17] AYNSLEY R. Quantifying the cooling sensation of air movement[J]. International Journal of Ventilation, 2008, 7(1):67-76. [18] YE G D, YANG C Z, CHEN Y M, et al. A new approach for measuring predicted mean vote (PMV) and standard effective temperature (SET*)[J]. Building and Environment, 2003, 38(1):33-44. [19] ZHANG S, LIN Z. Predicted mean vote with skin temperature from standard effective temperature model[J]. Building and Environment, 2020, 183:107133. [20] ASHRAE. ASHRAE handbook of fundamentals. Physiological principles. Comfort and health[R]. Atlanta, USA:ASHRAE, 2017. [21] GAGGE A P, NISHI Y, NEVINS R G. The role of clothing in meeting FEA energy conservation guidelines[J]. ASHRAE Transactions, 1976, 82(1):234-247. [22] DU H, YANG C Z. Re-visitation of the thermal environment evaluation index standard effective temperature (SET*) based on the two-node model[J]. Sustainable Cities and Society, 2020, 53:101899. [23] DE DEAR R, BRAGER G S, COOPER D. Developing an adaptive model of thermal comfort and preference[J]. ASHRAE Transactions, 1998, 104(1):1141-1152. [24] MCINTYRE D A. Indoor climate[M]. London, UK:Applied Science Publishers, 1980. [25] GAO J, WANG Y, WARGOCKI P. Comparative analysis of modified PMV models and SET models to predict human thermal sensation in naturally ventilated buildings[J]. Building and Environment, 2015, 92:200-208. [26] JI W J, ZHU Y X, CAO B. Development of the predicted thermal sensation (PTS) model using the ASHRAE global thermal comfort database[J]. Energy and Buildings, 2020, 211:109780. [27] VAN MARKEN LICHTENBELT W D, KINGMA B, VAN DER LANS A, et al. Cold exposure:An approach to increasing energy expenditure in humans[J]. Trends in Endocrinology and Metabolism, 2014, 25(4):165-167.