Abstract:Triboluminescence has been investigated by many researchers due to its many applications in various fields related to industry and life. However, the triboluminescence mechanism is still unclear. The triboluminescence mechanisms are further investigated here by experimentally studying the triboluminescence properties of SiO2 crystals with various crystal orientations. The experimental results show that the crystal orientation significantly affects the triboluminescence. Measurements of the triboluminescence spectra showed that the triboluminescence comes from the gas discharge caused by triboelectrification. The different triboluminescence intensities in different crystal orientations are then shown to be based on the differences in the work functions for different orientations.
李娜, 徐学锋. 晶向对摩擦发光影响的实验研究及机理分析[J]. 清华大学学报(自然科学版), 2022, 62(3): 470-475.
LI Na, XU Xuefeng. Experimental study and mechanism analysis on the effect of crystallographic orientation on triboluminescence. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 470-475.
[1] WALTON A J. Triboluminescence[J]. Advances in Physics, 1977, 26(6):887-948. [2] 梅增霞, 张希清, 姚志刚, 等. ZnS:Mn摩擦发光特性的研究[J]. 光谱学与光谱分析, 2001, 21(6):766-768. MEI Z X, ZHANG X Q, YAO Z G, et al. Study on the triboluminescent property of ZnS:Mn[J]. Spectroscopy and Spectral Analysis, 2001, 21(6):766-768. (in Chinese) [3] MONETTE Z, KASAR A K, MENEZES P L. Advances in triboluminescence and mechanoluminescence[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(22):19675-19690. [4] ZHANG J C, WANG X S, MARRIOTT G, et al. Trap-controlled mechanoluminescent materials[J]. Progress in Materials Science, 2019, 103:678-742. [5] SAGE I C, BOURHIL G. Triboluminescent materials for structural damage monitoring[J]. Journal of Materials Chemistry, 2001, 11(2):231-245. [6] OLAWALE D O, DICKENS T, SULLIVAN W G, et al. Progress in triboluminescence-based smart optical sensor system[J]. Journal of Luminescence, 2011, 131(7):1407-1418. [7] KNEIP S. A stroke of X-ray[J]. Nature, 2011, 473(7348):455-456. [8] HERNÁNDEZ-HERNÁNDEZ M C, ESCOBAR J V. The true spectrum of tribo-generated X-rays from peeling tape[J]. Applied Physics Letters, 2019, 115(20):201605. [9] XU B J, HE J J, MU Y X, et al. Very bright mechanoluminescence and remarkable mechanochromism using a tetraphenylethene derivative with aggregation-induced emission[J]. Chemical Science, 2015, 6(5):3236-3241. [10] KWAK S Y, YANG S, KIM N R, et al. Thermally stable, dye-bridged nanohybrid-based white light-emitting diodes[J]. Advanced Materials, 2011, 23(48):5767-5772. [11] TERASAKI N, ZHANG H W, YAMADA H, et al. Mechanoluminescent light source for a fluorescent probe molecule[J]. Chemical Communications, 2011, 47(28):8034-8036. [12] CHANDRA B P, ZINK J I. Triboluminescence and the dynamics of crystal fracture[J]. Physical Review B, 1980, 21(2):816-826. [13] CHAKRAVARTY A, PHILLIPSON T E. Triboluminescence and the potential of fracture surfaces[J]. Journal of Physics D:Applied Physics, 2004, 37(15):2175-2180. [14] TEKALUR S A. Triboluminescence in sodium chloride[J]. Journal of Luminescence, 2010, 130(11):2201-2206. [15] KOBAKHIDZE L, GUIDRY C J, HOLLERMAN W A, et al. Detecting mechanoluminescence from ZnS:Mn powder using a high speed camera[J]. IEEE Sensors Journal, 2013, 13(8):3053-3059. [16] SHI Y W, SHI Y D, XIE Q. Flexible 2D graphene-coupled ZnS:Mn2+ mechanodetectors for heart rate monitoring[J]. Journal of Luminescence, 2020, 226:117441. [17] BREWER J D, JEFFRIES B T, SUMMERS G P. Low-temperature fluorescence in sapphire[J]. Physical Review B, 1980, 22(10):4900-4906. [18] HIRD J R, CHAKRAVARTY A, WALTON A J. Triboluminescence from diamond[J]. Journal of Physics D:Applied Physics, 2007, 40(5):1464-1472. [19] WANG K, MA L, XU X, et al. Triboluminescence dominated by crystallographic orientation[J]. Scientific Report, 2016, 6:26324. [20] SONG C H, WANG K F, SANG X, et al. Tribo-induced near-infrared light emission between metal and quartz[J]. Langmuir, 2020, 36(5):1165-1173. [21] COLAK S B, VAN DER MARK M B, HOOFT G W T, et al. Clinical optical tomography and NIR spectroscopy for breast cancer detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4):1143-1158. [22] HE F, YANG G X, YANG P P, et al. A new single 808 nm NIR light-induced imaging-guided multifunctional cancer therapy platform[J]. Advanced Functional Materials, 2015, 25(25):3966-3976. [23] LI N, MA L R, XU X F, et al. Charge transfer dynamics in contact electrification of dielectrics investigated by triboluminescence[J]. Journal of Luminescence, 2020, 227:117531. [24] XU C, ZHANG B B, WANG A C, et al. Effects of metal work function and contact potential difference on electron thermionic emission in contact electrification[J]. Advanced Functional Materials, 2019, 29(29):1903142. [25] LIN S Q, XU L, XU C, et al. Electron transfer in nanoscale contact electrification:Effect of temperature in the metal-dielectric case[J]. Advanced Materials, 2019, 31(17):1808197. [26] LIN S Q, XU L, ZHU L P, et al. Electron transfer in nanoscale contact electrification:Photon excitation effect[J]. Advanced Materials, 2019, 31(27):1901418. [27] NAKAYAMA K, NEVSHUPA R A. Characteristics and pattern of plasma generated at sliding contact[J]. Journal of Tribology, 2003, 125(4):780-787. [28] PEARSE R W B, GAYDON A G. The identification of molecular spectra[M]. London:Chapman & Hall, 1965. [29] HARPER W R. The volta effect as a cause of static electrification[J]. Proceeding of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1951, 205(1080):83-103. [30] HARPER W R. Contact and frictional electrification[M]. London:Oxford University Press, 1967. [31] LOWELL J, ROSE-INNES A C. Contact electrification[J]. Advances in Physics, 1980, 29(6):947-1023. [32] MATSUSAKA S, MARUYAMA H, MATSUYAMA T, et al. Triboelectric charging of powders:A review[J]. Chemical Engineering Science, 2010, 65(22):5781-5807. [33] DUCK C B, FABISH T J. Contact electrification of polymers:A quantitative model[J]. Journal of Applied Physics, 1978, 49(1):315-321. [34] SHEN X Z, WANG A E, SANKARAN R M, et al. First-principles calculation of contact electrification and validation by experiment[J]. Journal of Electrostatics, 2016, 82:11-16. [35] STERNOVSKY Z, HORÁNYI M, ROBERTSON S. Charging of dust particles on surfaces[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2001, 19(5):2533-2541. [36] MURASHOV V V, DEMCHUK E. Surface sites and unrelaxed surface energies of tetrahedral silica polymorphs and silicate[J]. Surface Science, 2005, 595(1-3):6-19. [37] MURASHOV V V. Reconstruction of pristine and hydrolyzed quartz surfaces[J]. Journal of Physical Chemistry B, 2005, 109(9):4144-4151. [38] SCHLEGEL M L, NAGY K L, FENTER P, et al. Structures of quartz(100)- and (101)-water interfaces determined by X-ray reflectivity and atomic force microscopy of natural growth surfaces[J]. Geochimica et Cosmochimica Acta, 2002, 66(17):3037-3054. [39] 曾祥明, 欧阳楚英, 雷敏生. 第一性原理研究贵金属Co、Rh、Ir的表面能和表面功函数[J]. 江西师范大学学报(自然科学版), 2010, 34(4):340-345. ZENG X M, OUYANG C Y, LEI M S. First-principles investigation of the surface energy and work function of noble metal Co、Rh、Ir[J]. Journal of Jiangxi Normal University (Natural Science), 2010, 34(4):340-345. (in Chinese) [40] SKRIVER H L, ROSENGAARD N M. Surface energy and work function of elemental metals[J]. Physical Review B, 1992, 46(11):7157-7168.