Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (3): 470-475    DOI: 10.16511/j.cnki.qhdxxb.2021.25.019
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
晶向对摩擦发光影响的实验研究及机理分析
李娜, 徐学锋
北京林业大学 工学院, 北京 100083
Experimental study and mechanism analysis on the effect of crystallographic orientation on triboluminescence
LI Na, XU Xuefeng
School of Technology, Beijing Forestry University, Beijing 100083, China
全文: PDF(5181 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 由于摩擦发光在人们生产生活的诸多领域都有着广泛的应用前景,国内外学者对这一现象进行了大量的研究。但迄今为止,摩擦发光机理仍未十分清楚。为进一步探索摩擦发光机理,促进摩擦发光的应用,该文利用自行研制的摩擦发光探测装置,实验研究了SiO2晶体不同晶向的摩擦发光特性,实验结果表明晶向对摩擦发光有显著影响。通过测量摩擦发光光谱,发现摩擦发光来自于摩擦起电引起的气体放电,并进而利用功函数的差异解释了不同晶向摩擦发光强度的不同。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李娜
徐学锋
关键词 摩擦发光晶向光强光谱    
Abstract:Triboluminescence has been investigated by many researchers due to its many applications in various fields related to industry and life. However, the triboluminescence mechanism is still unclear. The triboluminescence mechanisms are further investigated here by experimentally studying the triboluminescence properties of SiO2 crystals with various crystal orientations. The experimental results show that the crystal orientation significantly affects the triboluminescence. Measurements of the triboluminescence spectra showed that the triboluminescence comes from the gas discharge caused by triboelectrification. The different triboluminescence intensities in different crystal orientations are then shown to be based on the differences in the work functions for different orientations.
Key wordstriboluminescence    crystallographic orientation    light intensity    light spectrum
收稿日期: 2021-01-05      出版日期: 2022-03-10
基金资助:徐学锋,教授,E-mail:xuxuefeng@bjfu.edu.cn
引用本文:   
李娜, 徐学锋. 晶向对摩擦发光影响的实验研究及机理分析[J]. 清华大学学报(自然科学版), 2022, 62(3): 470-475.
LI Na, XU Xuefeng. Experimental study and mechanism analysis on the effect of crystallographic orientation on triboluminescence. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 470-475.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.25.019  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I3/470
  
  
  
  
  
  
[1] WALTON A J. Triboluminescence[J]. Advances in Physics, 1977, 26(6):887-948.
[2] 梅增霞, 张希清, 姚志刚, 等. ZnS:Mn摩擦发光特性的研究[J]. 光谱学与光谱分析, 2001, 21(6):766-768. MEI Z X, ZHANG X Q, YAO Z G, et al. Study on the triboluminescent property of ZnS:Mn[J]. Spectroscopy and Spectral Analysis, 2001, 21(6):766-768. (in Chinese)
[3] MONETTE Z, KASAR A K, MENEZES P L. Advances in triboluminescence and mechanoluminescence[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(22):19675-19690.
[4] ZHANG J C, WANG X S, MARRIOTT G, et al. Trap-controlled mechanoluminescent materials[J]. Progress in Materials Science, 2019, 103:678-742.
[5] SAGE I C, BOURHIL G. Triboluminescent materials for structural damage monitoring[J]. Journal of Materials Chemistry, 2001, 11(2):231-245.
[6] OLAWALE D O, DICKENS T, SULLIVAN W G, et al. Progress in triboluminescence-based smart optical sensor system[J]. Journal of Luminescence, 2011, 131(7):1407-1418.
[7] KNEIP S. A stroke of X-ray[J]. Nature, 2011, 473(7348):455-456.
[8] HERNÁNDEZ-HERNÁNDEZ M C, ESCOBAR J V. The true spectrum of tribo-generated X-rays from peeling tape[J]. Applied Physics Letters, 2019, 115(20):201605.
[9] XU B J, HE J J, MU Y X, et al. Very bright mechanoluminescence and remarkable mechanochromism using a tetraphenylethene derivative with aggregation-induced emission[J]. Chemical Science, 2015, 6(5):3236-3241.
[10] KWAK S Y, YANG S, KIM N R, et al. Thermally stable, dye-bridged nanohybrid-based white light-emitting diodes[J]. Advanced Materials, 2011, 23(48):5767-5772.
[11] TERASAKI N, ZHANG H W, YAMADA H, et al. Mechanoluminescent light source for a fluorescent probe molecule[J]. Chemical Communications, 2011, 47(28):8034-8036.
[12] CHANDRA B P, ZINK J I. Triboluminescence and the dynamics of crystal fracture[J]. Physical Review B, 1980, 21(2):816-826.
[13] CHAKRAVARTY A, PHILLIPSON T E. Triboluminescence and the potential of fracture surfaces[J]. Journal of Physics D:Applied Physics, 2004, 37(15):2175-2180.
[14] TEKALUR S A. Triboluminescence in sodium chloride[J]. Journal of Luminescence, 2010, 130(11):2201-2206.
[15] KOBAKHIDZE L, GUIDRY C J, HOLLERMAN W A, et al. Detecting mechanoluminescence from ZnS:Mn powder using a high speed camera[J]. IEEE Sensors Journal, 2013, 13(8):3053-3059.
[16] SHI Y W, SHI Y D, XIE Q. Flexible 2D graphene-coupled ZnS:Mn2+ mechanodetectors for heart rate monitoring[J]. Journal of Luminescence, 2020, 226:117441.
[17] BREWER J D, JEFFRIES B T, SUMMERS G P. Low-temperature fluorescence in sapphire[J]. Physical Review B, 1980, 22(10):4900-4906.
[18] HIRD J R, CHAKRAVARTY A, WALTON A J. Triboluminescence from diamond[J]. Journal of Physics D:Applied Physics, 2007, 40(5):1464-1472.
[19] WANG K, MA L, XU X, et al. Triboluminescence dominated by crystallographic orientation[J]. Scientific Report, 2016, 6:26324.
[20] SONG C H, WANG K F, SANG X, et al. Tribo-induced near-infrared light emission between metal and quartz[J]. Langmuir, 2020, 36(5):1165-1173.
[21] COLAK S B, VAN DER MARK M B, HOOFT G W T, et al. Clinical optical tomography and NIR spectroscopy for breast cancer detection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4):1143-1158.
[22] HE F, YANG G X, YANG P P, et al. A new single 808 nm NIR light-induced imaging-guided multifunctional cancer therapy platform[J]. Advanced Functional Materials, 2015, 25(25):3966-3976.
[23] LI N, MA L R, XU X F, et al. Charge transfer dynamics in contact electrification of dielectrics investigated by triboluminescence[J]. Journal of Luminescence, 2020, 227:117531.
[24] XU C, ZHANG B B, WANG A C, et al. Effects of metal work function and contact potential difference on electron thermionic emission in contact electrification[J]. Advanced Functional Materials, 2019, 29(29):1903142.
[25] LIN S Q, XU L, XU C, et al. Electron transfer in nanoscale contact electrification:Effect of temperature in the metal-dielectric case[J]. Advanced Materials, 2019, 31(17):1808197.
[26] LIN S Q, XU L, ZHU L P, et al. Electron transfer in nanoscale contact electrification:Photon excitation effect[J]. Advanced Materials, 2019, 31(27):1901418.
[27] NAKAYAMA K, NEVSHUPA R A. Characteristics and pattern of plasma generated at sliding contact[J]. Journal of Tribology, 2003, 125(4):780-787.
[28] PEARSE R W B, GAYDON A G. The identification of molecular spectra[M]. London:Chapman & Hall, 1965.
[29] HARPER W R. The volta effect as a cause of static electrification[J]. Proceeding of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1951, 205(1080):83-103.
[30] HARPER W R. Contact and frictional electrification[M]. London:Oxford University Press, 1967.
[31] LOWELL J, ROSE-INNES A C. Contact electrification[J]. Advances in Physics, 1980, 29(6):947-1023.
[32] MATSUSAKA S, MARUYAMA H, MATSUYAMA T, et al. Triboelectric charging of powders:A review[J]. Chemical Engineering Science, 2010, 65(22):5781-5807.
[33] DUCK C B, FABISH T J. Contact electrification of polymers:A quantitative model[J]. Journal of Applied Physics, 1978, 49(1):315-321.
[34] SHEN X Z, WANG A E, SANKARAN R M, et al. First-principles calculation of contact electrification and validation by experiment[J]. Journal of Electrostatics, 2016, 82:11-16.
[35] STERNOVSKY Z, HORÁNYI M, ROBERTSON S. Charging of dust particles on surfaces[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 2001, 19(5):2533-2541.
[36] MURASHOV V V, DEMCHUK E. Surface sites and unrelaxed surface energies of tetrahedral silica polymorphs and silicate[J]. Surface Science, 2005, 595(1-3):6-19.
[37] MURASHOV V V. Reconstruction of pristine and hydrolyzed quartz surfaces[J]. Journal of Physical Chemistry B, 2005, 109(9):4144-4151.
[38] SCHLEGEL M L, NAGY K L, FENTER P, et al. Structures of quartz(100)- and (101)-water interfaces determined by X-ray reflectivity and atomic force microscopy of natural growth surfaces[J]. Geochimica et Cosmochimica Acta, 2002, 66(17):3037-3054.
[39] 曾祥明, 欧阳楚英, 雷敏生. 第一性原理研究贵金属Co、Rh、Ir的表面能和表面功函数[J]. 江西师范大学学报(自然科学版), 2010, 34(4):340-345. ZENG X M, OUYANG C Y, LEI M S. First-principles investigation of the surface energy and work function of noble metal Co、Rh、Ir[J]. Journal of Jiangxi Normal University (Natural Science), 2010, 34(4):340-345. (in Chinese)
[40] SKRIVER H L, ROSENGAARD N M. Surface energy and work function of elemental metals[J]. Physical Review B, 1992, 46(11):7157-7168.
[1] 李开远, 袁宏永, 陈涛, 黄丽达. 基于TDLAS的光学探针式初期火灾探测系统[J]. 清华大学学报(自然科学版), 2023, 63(6): 910-916.
[2] 林鹏翥, 娄佳慧, 李建兰, 郝勇. 光谱选择透过性对聚光太阳能热化学循环性能的影响[J]. 清华大学学报(自然科学版), 2021, 61(12): 1389-1396.
[3] 冯倩倩, 王文娟, 李海冬, 潘勋. 利用激光扫描共聚焦显微镜研究叶绿体自发荧光[J]. 清华大学学报(自然科学版), 2017, 57(6): 651-654,660.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn