Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (8): 1357-1365    DOI: 10.16511/j.cnki.qhdxxb.2022.25.033
  工程管理 本期目录 | 过刊浏览 | 高级检索 |
可再生能源开发及多能互补分析——以青海为例
金勇1,3, 马吉明1, 朱守真2, 栗楠2,4
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084;
2. 清华大学 电机系, 北京 100084;
3. 中国电建集团海外投资有限公司, 北京 100048;
4. 华能能源研究院, 北京 100031
Renewable energy development and multi-energy complementation, taking Qinghai as an example
JIN Yong1,3, MA Jiming1, ZHU Shouzhen2, LI Nan2,4
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
3. Powerchina Resources LTD, Beijing 100048, China;
4. Energy Research Institute of China Huaneng Group, Beijing 100031, China
全文: PDF(3921 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 积极开发可再生能源是中国实现“双碳”目标的重要途径之一。该文总结了2020年中国各类电力装机容量,对比了中国与世界的电力“绿色程度”,提出了可用于模拟计算梯级水库群水电调峰能力的一种方法,给出了进行多电源互补的过程,通过对黄河上游梯级电站的模拟,获得了青海省在2030规划水平年逐月的调峰电量和电网多能互补分析结果。负荷的逐月平衡分析表明:丰水年份,风电和光伏发电产生较多弃电,而平水年、枯水年的发电能力与电网负荷需求基本匹配。典型日逐时多能互补分析表明:丰水年夏季,风电、光伏入网将导致负荷峰谷差变大,风、光产生较多弃电;枯水年冬季,水电和火电的电量与调峰能力不足,需要从外网购电,但这同时会导致弃光和弃风。青海电网应推动储能建设及其他电源的建设,秉持电网基荷电量和调峰能力建设并重,以减少网内弃电和外网购电。该文所介绍的水库群电力调节能力模拟方法和多能互补过程可用于其他电网,所得结论对青海的电源发展具有一定的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金勇
马吉明
朱守真
栗楠
关键词 水电调峰多能互补风电光伏抽水蓄能    
Abstract:Actively developing renewable energy sources is one important way to achieve the carbon peak and neutrality targets in China. This paper summarizes the power installed capacities of various power generation methods in China in 2020 and compares the electricity green capabilities in China and the world. This paper then describes a method to analyze the peak shaving capacity of cascade reservoirs, presents a way to integrate multiple power sources, and uses simulations of cascade hydropower stations in the upper reaches of the Yellow River to predict the monthly peak shaving capability of hydropower and other energy sources for the power grid of Qinghai Province for the target year of 2030. The monthly load balance analysis shows that wind power and photovoltaic power generation will lead to more excess, wasted electricity generation in wet years, with full use of the generated power in normal and dry years. The hourly analysis of the multiple power sources during a typical day shows that wind power and photovoltaic power production increases the peak-valley difference of the electrical loads and lead to more excess electricity that is wasted, while in winters of dry years, the electrical production and peak shaving capacity are insufficient and lead to power outsourcing which results in the abandoning of wind and photovoltaic power sources. Thus, the Qinghai power grid needs to promote the construction of power storage systems and renewable power sources. Qinghai also needs to enlarge their baseload capacity and peak shaving capacity to reduce waste and power outsourcing. The simulation method to analyze power shaving capacities of cascade reservoirs and integrating multiple energy sources may be used in other power grids and the conclusions provide a reference for developing the Qinghai electrical system.
Key wordshydropower peak shaving    multi-energy complementation    wind power    photovoltage    pumped storage
收稿日期: 2021-10-22      出版日期: 2022-03-29
基金资助:清华大学水沙科学与水利水电工程国家重点实验室资助项目(2022-KY-02)
通讯作者: 马吉明,教授,E-mail:majiming@tsinghua.edu.cn      E-mail: majiming@tsinghua.edu.cn
作者简介: 金勇(1975—),男,高级工程师。
引用本文:   
金勇, 马吉明, 朱守真, 栗楠. 可再生能源开发及多能互补分析——以青海为例[J]. 清华大学学报(自然科学版), 2022, 62(8): 1357-1365.
JIN Yong, MA Jiming, ZHU Shouzhen, LI Nan. Renewable energy development and multi-energy complementation, taking Qinghai as an example. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1357-1365.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.033  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I8/1357
  
  
  
  
  
  
[1] 马瑾瑾. 欧洲议会批准《欧洲气候法》草案[EB/OL]. (2021-05-11). https://world.huanqiu.com/article/4354mtTJCor. MA J J. The European Parliament approves the draft of the European Climate Law[EB/OL]. (2021-05-11). https://world.huanqiu.com/article/4354mtTJCor. (in Chinese)
[2] 安颖琪. 日本通过2050年碳中和法案[EB/OL]. (2021-05-27). https://m.news.cctv.com/2021/05/27/ARTInlClqarVuum3lk2wAKmi210527.shtml. AN Y Q. Japan passes the 2050 carbon neutrality target act[EB/OL]. (2021-05-27). https://m.news.cctv.com/2021/05/27/ARTInlClqarVuum3lk2wAKmi210527.shtml. (in Chinese)
[3] 杨永江, 王立涛, 孙卓. 风、光、水多能互补是我国"碳中和"的必由之路[J]. 水电与抽水蓄能, 2021, 7(4):15-19. YANG Y J, WANG L T, SUN Z. The Complementary between wind power, solar power and hydropower is the only way to neutralize carbon in China[J]. Hydropower and Pumped Storage, 2021, 7(4):15-19. (in Chinese)
[4] 国网能源研究院有限公司. 全球能源分析与展望-2020[M]. 北京:中国电力出版社, 2020. State Grid Energy Research Institute. Global energy review & outlook[M]. Beijing:China Electric Power Press, 2020. (in Chinese)
[5] 中国社会科学院数量经济与技术经济研究所"能源转型与能源安全研究"课题组. 中国能源转型:走向碳中和[M]. 北京:社会科学文献出版社, 2021. Institute of Quantitative & Technological Economics (IQRE), CASS, "Energy Transition and Energy Security Research" Research Group. China's energy transition:Toward carbon neutrality[M]. Beijing:Social Sciences Academic Press (China), 2021. (in Chinese)
[6] 国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[M]. 北京:中国统计出版社, 2021. National Bureau of Statistics. Statistical Communiqué of the People's Republic of China on the 2020 national economic and social development[M]. Beijing:China Statistics Press, 2021. (in Chinese)
[7] 李菊根, 史立山. 我国水力资源概况[J]. 水力发电, 2006, 32(1):3-7. LI J G, SHI L S. Brief description of hydropower resources in China[J]. Water Power, 2006, 32(1):3-7. (in Chinese)
[8] KERN J D, PATINO-ECHEVERRI D, CHARACKLIS G W. An integrated reservoir-power system model for evaluating the impacts of wind integration on hydropower resources[J]. Renewable Energy, 2014, 71:553-562.
[9] JACOBSON M Z, DELUCCHI M A, CAMERON M A, et al. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(49):15060-15065.
[10] 唐洁晨. "十三五"西北电网发展综述[EB/OL]. (2021-01-06). http://www.chinapower.com.cn/dww/zhxw/20210106/42508.html. TANG J C. Summary of the development of northwest power grid in the 13th Five-Year Plan[EB/OL]. (2021-01-06). http://www.chinapower.com.cn/dww/zhxw/20210106/42508.html. (in Chinese)
[11] 龚传利, 王英鑫, 陈小松, 等. 龙羊峡水光互补自动发电控制策略及应用[J]. 水电站机电技术, 2014, 37(3):63-64, 114. GONG C L, WANG Y X, CHEN X S, et al. The automatic generation control strategy and application of Longyang Gorge Hydropower compensation photovoltaic power[J]. Mechanical & Electrical Technique of Hydropower Station, 2014, 37(3):63-64, 114. (in Chinese)
[12] 庞秀岚, 张伟. 大规模水光互补协调运行技术研究及应用[J]. 青海科技, 2017, 24(2):24-28. PANG X L, ZHANG W. Research and application of large-scale hydropower and photovoltaic complementary and coordinated operation technology[J]. Qinghai Science and Technology, 2017, 24(2):24-28. (in Chinese)
[13] 庞名立. 2020年全球电力报告(上)[R/OL]. (2020-07-01). http://www.chinapower.com.cn/zx/zxbg/20200701/23979.html. PANG M L. 2020 global electricity report (Part 1)[R/OL]. (2020-07-01). http://www.chinapower.com.cn/zx/zxbg/20200701/23979.html.2020. (in Chinese).
[14] HE X H, ZHENG L J. Analysis of multi-energy complementary integration optimization technology[C]//20194th International Conference on Advances in Energy and Environment Research (ICAEER 2019). Les Ulis, France:Energy Engineering, Materials and Technology, 2019. DOI:10.1051/e3sconf/201911801057.
[15] JIA J, LI B, GAO H Y, et al. Optimization model for island multi-energy complementary power supply system based on lifecycle cost[C]//The 28th International Ocean and Polar Engineering Conference. Sapporo, Japan:ISOPE, 2018.
[16] 周建军, 张曼. 近年长江中下游径流节律变化、效应与修复对策[J]. 湖泊科学, 2018, 30(6):1471-1488. ZHOU J J, ZHANG M. Effect of dams on the regime of the mid-lower Yangtze River runoff and countermeasures[J]. Journal of Lake Sciences, 2018, 30(6):1471-1488. (in Chinese)
[17] 覃晖, 周建中, 肖舸, 等. 梯级水电站多目标发电优化调度[J]. 水科学进展, 2010, 21(3):377-384. QIN H, ZHOU J Z, XIAO G, et al. Multi-objective optimal dispatch of cascade hydropower stations using strength Pareto differential evolution[J]. Advances in Water Science, 2010, 21(3):377-384. (in Chinese)
[18] 水利部黄河水利委员会. 黄河流域综合规划(2012-2030年)[M]. 郑州:黄河水利出版社, 2013. Yellow River Conservancy Commission. Comprehensive planning of the Yellow River basin (2012-2030)[M]. Zhengzhou:Yellow River Water Conservancy Press, 2013. (in Chinese)
[19] 青海省发改委, 青海省电力公司. 青海省能源中长期发展规划研究[R]. 2009. Qinghai Provincial Development and Reform Commission, Qinghai Electric Power Company. Research on the mid-and long-term energy development plan of Qinghai province[R]. 2009. (in Chinese)
[20] 黄河防汛抗旱总指挥部办公室. 2012年龙羊峡、刘家峡水库联合防洪方案[R]. 2012. The Yellow River Flood Control and Drought Relief Headquarters Office. 2012 Longyangxia and Liujiaxia reservoirs joint flood control plan[R]. 2012. (in Chinese)
[21] 国家能源局. 水电发展"十三五"规划(2016-2020年)[EB/OL]. (2017-06-13). https://www.bijie.gov.cn/bm/bjsstymj/gk_5127605/gzjh_5832062/201708/t20170823_67592905.html. National Energy Administration. The 13th five-year plan for hydropower development (2016-2020)[EB/OL]. (2017-06-13). https://www.bijie.gov.cn/bm/bjsstymj/gk_5127605/gzjh_5832062/201708/t20170823_67592905.html. (in Chinese)
[22] 中国电建集团西北勘测设计研究院有限公司. 黄河玛尔挡水电站工程环境影响报告书(送审稿)[R]. 2015. Power China Northwest Engineering Corporation LIMITED. Environmental impact report of maldang hydropower station project on the Yellow River (Draft for Review)[R]. 2015. (in Chinese)
[23] 马吉明, 张楚汉, 朱守真, 等. 水电对风能太阳能间歇性电力的支持与协调运行[J]. 中国科学:技术科学, 2015, 45(10):1089-1097. MA J M, ZHANG C H, ZHU S Z, et al. Supporting of hydropower for intermittent wind and photovoltaic power and the coordinated operation between them[J]. Scientia Sinica Technologica, 2015, 45(10):1089-1097. (in Chinese)
[24] 王彦哲, 周胜, 王宇, 等. 中国核电和其他电力技术环境影响综合评价[J]. 清华大学学报(自然科学版), 2021, 61(4):377-384. WANG Y Z, ZHOU S, WANG Y, et al. Comprehensive assessment of the environmental impact of China's nuclear and other power generation technologies[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(4):377-384. (in Chinese)
[25] 曹军文, 郑云, 张文强, 等. 能源互联网推动下的氢能发展[J]. 清华大学学报(自然科学版), 2021, 61(4):302-311. CAO J W, ZHENG Y, ZHANG W Q, et al. Hydrogen energy development driven by the energy Internet[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(4):302-311. (in Chinese)
[1] 王鑫, 林鹏, 黄浩东, 袁兢, 邱旭, 刘鑫. 海上风电基础冲刷动力特性及在线监测[J]. 清华大学学报(自然科学版), 2023, 63(7): 1087-1094.
[2] 代鑫, 陈举师, 陈涛, 黄弘, 李志鹏, 余水平. 抽水蓄能电站应急排水多目标优化方法及算例分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1558-1565.
[3] 王卫, 王百智, 陈松贵, 闫俊义, 金峰, 江朝华. 海上风电单桩胶结抛石体防冲刷措施模型试验研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1401-1407.
[4] 胡万丰, 樊红刚, 王正伟. 双馈式抽水蓄能机组功率调节仿真与控制[J]. 清华大学学报(自然科学版), 2021, 61(6): 591-600.
[5] 黄碧月, 陈雅皓, 孙海顺, 毛俞杰, 韩应生, 王东泽. 考虑静止无功补偿器的直驱风电并网系统次同步振荡[J]. 清华大学学报(自然科学版), 2021, 61(5): 446-456.
[6] 黄伟, 杨开林, 郭新蕾, 马吉明, 李甲振. 抽水蓄能电站极端甩负荷工况球阀协同调节[J]. 清华大学学报(自然科学版), 2019, 59(8): 635-644.
[7] 黄忠山, 田凌, 向东, 韦尧中. 基于PCA和SPC-动态神经网络的风电机组齿轮箱油温趋势预测[J]. 清华大学学报(自然科学版), 2018, 58(6): 539-546.
[8] 杨春宝, 张建民, 王睿. 海上风电吸力桶基础地震分析[J]. 清华大学学报(自然科学版), 2017, 57(11): 1207-1211.
[9] 黄必清, 何焱, 王婷艳. 基于模糊综合评价的海上直驱风电机组运行状态评估[J]. 清华大学学报(自然科学版), 2015, 55(5): 543-549.
[10] 杨文韬, 耿华, 肖帅, 杨耕. 最大功率跟踪控制下大型风电机组的轴系扭振分析及抑制[J]. 清华大学学报(自然科学版), 2015, 55(11): 1171-1177.
[11] 黄必清,张毅,易晓春. 海上风电场运行维护系统[J]. 清华大学学报(自然科学版), 2014, 54(4): 522-529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn