Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (8): 1330-1340    DOI: 10.16511/j.cnki.qhdxxb.2022.25.036
  智能预测反馈 本期目录 | 过刊浏览 | 高级检索 |
曹子龙, 黄杜若
清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Time-frequency characteristic analyses of measured and artificial seismic waves using the XGBoost algorithm
CAO Zilong, HUANG Duruo
State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(12273 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 近年来,人工智能方法快速发展,在许多工程问题中,逐渐引入具有良好预测能力和泛化能力的机器学习算法。该文考虑采用XGBoost人工智能方法,对工程场地实测和人工模拟地震波的时频规律特征进行深入探索,旨在解决地震波研究目前存在的资料缺乏与认识匮乏两大问题。采用的XGBoost算法优势在于人工智能方法的高性能计算能够完成传统计算方法难以实现的对大量数据的分析,从而发掘、重现地震波的时域和频域特征。在对实测和SIMQKE人工地震波的判别研究中,发现本算法对于二者的判别准确率能达到91%,进一步研究发现人工地震波与实测波差别主要体现在时频域特征的相关性上。该文有助于进一步认识地震波的时频特征,同时也对人工地震波模拟方法的发展具有重要意义。
E-mail Alert
关键词 人工地震波XGBoost方法智能监测SIMQKE小波包分析    
Abstract:The rapid development of artificial intelligence and machine learning techniques that can predict and generalize data sets are gradually being introduced into many engineering projects. The XGBoost artificial intelligence method was used here to analyze the time-frequency characteristics of measured and artificially simulated seismic waves to resolve the two problems of the lack of data and the lack of understanding seismic waves. The advantage of the XGBoost method is that high-performance artificial intelligence methods can analyze large amounts of data that would be difficult by traditional calculational methods. The method can then be used to analyze the time-frequency domain characteristics of seismic waves. The algorithm accurately discriminated 91% of the measured and artificial SIMQKE seismic waves. Further research showed that the difference between the artificial seismic waves and the measured waves was mainly reflected in the correlation of the time-frequency domain characteristics. This study reveals the time-frequency characteristics of seismic waves that will facilitate the development of artificial seismic wave simulation methods.
Key wordsartificial seismic waves    XGBoost    intelligent monitoring    SIMQKE    wavelet packet analyses
收稿日期: 2021-10-28      出版日期: 2022-03-31
通讯作者: 黄杜若,副教授,      E-mail:
作者简介: 曹子龙(1999—),男,博士研究生。
曹子龙, 黄杜若. 基于XGBoost算法的工程场地实测和人工地震波时频特征分析与判别[J]. 清华大学学报(自然科学版), 2022, 62(8): 1330-1340.
CAO Zilong, HUANG Duruo. Time-frequency characteristic analyses of measured and artificial seismic waves using the XGBoost algorithm. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1330-1340.
链接本文:  或
[1] YOUNGS R R, CHIOU S J, SILVA W J, et al. Strong ground motion attenuation relationships for subduction zone earthquakes[J]. Seismological Research Letters, 1997, 68(1):58-73.
[2] YEH C H, WEN Y K. Modeling of nonstationary ground motion and analysis of inelastic structural response[J]. Structural Safety, 1990, 8(1-4):281-298.
[3] CONTE J P, PENG B F. Fully nonstationary analytical earthquake ground-motion model[J]. Journal of Engineering Mechanics, 1997, 123(1):15-24.
[4] URSINO A, LANGER H, SCARFI L, et al. Discrimination of quarry blasts from tectonic microearthquakes in the Hyblean Plateau (Southeastern Sicily)[J]. Annals of Geophysics, 2001, 44(4):703-722.
[5] WISZNIOWSKI J, PLESIEWICZ B M, TROJANOWSKI J. Application of real time recurrent neural network for detection of small natural earthquakes in Poland[J]. Acta Geophysica, 2014, 62(3):469-485.
[6] PEROL T, GHARBI M, DENOLLE M. Convolutional neural network for earthquake detection and location[J]. Science Advances, 2018, 4(2):e1700578.
[7] ANCHETA T D, DARRAGH R B, STEWART J P, et al. NGA-West2 database[J]. Earthquake Spectra, 2014, 30(3):989-1005.
[8] YAMAMOTO Y, BAKER J W. Stochastic model for earthquake ground motion using wavelet packets[J]. Bulletin of the Seismological Society of America, 2013, 103(6):3044-3056.
[9] HUANG D R, WANG G. Stochastic simulation of regionalized ground motions using wavelet packets and cokriging analysis[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(5):775-794.
[10] HUANG D R, WANG G. Region-specific spatial cross-correlation model for stochastic simulation of regionalized ground-motion time histories[J]. Bulletin of the Seismological Society of America, 2015, 105(1):272-284.
[11] 黄杜若, 王刚, 盛志刚. 基于小波包和空间相关性分析的人工地震波仿真技术[J]. 华南地震, 2014, 34(3):82-90. HUANG D R, WANG G, SHENG Z G. Simulation technology of artificial seismic waves based on wavelet packets and spatial correlation analysis[J]. South China Journal of Seismology, 2014, 34(3):82-90. (in Chinese)
[12] WANG G, YOUNGS R, POWER M, et al. Design ground motion library:An interactive tool for selecting earthquake ground motions[J]. Earthquake Spectra, 2015, 31(2):617-635.
[13] JENNINGS P C, HOUSNER G W, TSAI N C. Simulated earthquake motions[R]. USA:California Institute of Technology, EERL, 1968.
[14] WANG M X, HUANG D R, WANG G, et al. SS-XGBoost:A machine learning framework for predicting newmark sliding displacements of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9):04020074.
[15] CHEN T Q, GUESTRIN C. XGBoost:A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA:ACM, 2016:785-794.
No related articles found!
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持