Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (8): 1252-1269    DOI: 10.16511/j.cnki.qhdxxb.2022.25.018
  智能施工 本期目录 | 过刊浏览 | 高级检索 |
大坝智能建造研究进展与发展趋势
李庆斌1, 马睿1, 胡昱1, 皇甫泽华2, 沈益源3, 周绍武4, 马金刚5, 安再展6, 郭光文7
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084;
2. 河南省前坪水库建设管理局, 郑州 450003;
3. 中国水利水电第十二工程局有限公司, 杭州 310004;
4. 中国长江三峡集团公司, 北京 100038;
5. 中国能源建设股份有限公司, 北京 100022;
6. 中国铁道科学研究院集团有限公司, 北京 100081;
7. 中国葛洲坝集团股份有限公司, 武汉 430033
A review of intelligent dam construction techniques
LI Qingbin1, MA Rui1, HU Yu1, HUANGFU Zehua2, SHEN Yiyuan3, ZHOU Shaowu4, MA Jingang5, AN Zaizhan6, GUO Guangwen7
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. Qianping Reservoir Construction and Management Administration, Zhengzhou 450003, China;
3. Sinohydro Bureau 12 Co., Ltd., Huangzhou 310004, China;
4. China Three Gorges Corporation, Beijing 100038, China;
5. China Energy Engineering Group, Beijing 100022, China;
6. China Academy of Railway Science Co., Ltd., Beijing 100081, China;
7. China Gezhouba Group Co., Ltd., Wuhan 430033, China
全文: PDF(6253 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 我国高坝建设将进入新的发展阶段,对大坝工程智能化建设的关键问题提出了新的要求,而新一代信息技术革命为大坝建造智能化提供了新的发展途径,深度融合新一代信息技术推动建造智能化是实现“安全、高质、高效、经济、绿色”建设目标的关键,大坝智能化建造与建造智能大坝是新的发展趋势。因此,该文总结了智能建造理论发展的两条脉络,梳理了大坝智能建造技术发展的3个阶段,分析了智能建造各阶段技术特征、技术目标、理论理念、技术方法、管理模式及重大工程实践案例,阐述了大坝智能建造与智能大坝的关系,揭示了大坝建造智能化阶段的3个层次,阐明了智能化时代关键问题解决的理念变迁,探讨了大坝智能建造未来发展方向与关键技术。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李庆斌
马睿
胡昱
皇甫泽华
沈益源
周绍武
马金刚
安再展
郭光文
关键词 大坝智能建造智能大坝人工智能    
Abstract:High dam construction is continuing to develop with new requirements for intelligent dam construction. New information technology capabilities are providing paths for improved intelligent dam construction. The key to achieving safe, quality, efficient, economic, green construction projects is to integrate these new information technology capabilities into intelligent construction methods. New systems enable intelligent construction of dams and the construction of intelligent dams. This article summarizes these two paths for intelligent construction, identifies three stages in the development of intelligent construction systems for dams, and analyzes the technical characteristics, goals, theory, methods, and management models with engineering examples for each stage of the intelligent construction process. The analysis shows the relationship between intelligent dam construction and intelligent dams, the three stages of intelligent dam construction, the changes in manager thinking for solving key problems in the intelligent era, and future developments in intelligent dam construction.
Key wordsdams    intelligent construction    intelligent dams    artificial intelligence
收稿日期: 2021-10-28      出版日期: 2022-03-31
基金资助:国家自然科学基金项目(52130901,51839007)
作者简介: 李庆斌(1964—),男,教授。E-mail:qingbinli@tsinghua.edu.cn
引用本文:   
李庆斌, 马睿, 胡昱, 皇甫泽华, 沈益源, 周绍武, 马金刚, 安再展, 郭光文. 大坝智能建造研究进展与发展趋势[J]. 清华大学学报(自然科学版), 2022, 62(8): 1252-1269.
LI Qingbin, MA Rui, HU Yu, HUANGFU Zehua, SHEN Yiyuan, ZHOU Shaowu, MA Jingang, AN Zaizhan, GUO Guangwen. A review of intelligent dam construction techniques. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1252-1269.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.018  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I8/1252
  
  
  
  
  
  
  
[1] 王爱玲, 邓正刚. 我国超级高坝的发展与挑战[J]. 水力发电, 2015, 41(2):45-47, 93. WANG A L, DENG Z G. Development and challenges of super high dams in China and other countries[J]. Water Power, 2015, 41(2):45-47, 93. (in Chinese)
[2] 周建平, 王浩, 陈祖煜, 等. 特高坝及其梯级水库群设计安全标准研究Ⅰ:理论基础和等级标准[J]. 水利学报, 2015, 46(5):505-514. ZHOU J P, WANG H, CHEN Z Y, et al. Evaluations on the safety design standards for dams with extra height or cascade impacts. Part I:Fundamentals and criteria[J]. Journal of Hydraulic Engineering, 2015, 46(5):505-514. (in Chinese)
[3] 卢纯. 开启我国能源体系重大变革和清洁可再生能源创新发展新时代——深刻理解碳达峰、碳中和目标的重大历史意义[J]. 人民论坛·学术前沿, 2021(14):28-41. LU C. Opening a new era of major changes in China's energy system and innovative development of clean and renewable energy-deeply understanding the great historical significance of the targets of carbon peak and carbon neutralization[J]. Frontiers, 2021(14):28-41. (in Chinese)
[4] 石春先. 以规划为引领强力推动"十四五"水利高质量发展[J]. 水利发展研究, 2021, 21(7):6-8. SHI C X. Taking planning as a guide to vigorously promote the high-quality development of water conservancy during the 14th Five-Year Plan period[J]. Water Resources Development Research, 2021, 21(7):6-8. (in Chinese)
[5] 周建平, 杜效鹄, 周兴波. "十四五"水电开发形势分析、预测与对策措施[J]. 水电与抽水蓄能, 2021, 7(1):1-5. DOI:10.3969/j.issn.2096-093X.2021.01.001. ZHOU J P, DU X H, ZHOU X B. Situation analysis, prediction and countermeasures of hydropower development during the 14th five-year period[J]. Hydropower and Pumped Storage, 2021, 7(1):1-5. DOI:10.3969/j.issn.2096-093X.2021.01.001. (in Chinese)
[6] 孙其博, 刘杰, 黎羴, 等. 物联网:概念、架构与关键技术研究综述[J]. 北京邮电大学学报, 2010, 33(3):1-9. SUN Q B, LIU J, LI Y, et al. Internet of things:Summarize on concepts, architecture and key technology problem[J]. Journal of Beijing University of Posts and Telecommunications, 2010, 33(3):1-9. (in Chinese)
[7] ATZORI L, IERA A, MORABITO G. The internet of things:A survey[J]. Computer Networks, 2010, 54(15):2787-2805.
[8] MCAFEE A, BRYNJOLFSSON E. Big data:The management revolution[J]. Harvard Business Review, 2012, 90(10):60-68.
[9] 李国杰, 程学旗. 大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J]. 中国科学院院刊, 2012, 27(6):647-657. LI G J, CHENG X Q. Research status and scientific thinking of big data[J]. Bulletin of the Chinese Academy of Sciences, 2012, 27(6):647-657. (in Chinese)
[10] 危辉, 潘云鹤. 从知识表示到表示:人工智能认识论上的进步[J]. 计算机研究与发展, 2000, 37(7):819-825. WEI H, PAN Y H. The progress in epistemology of AI:From knowledge representation to representation[J]. Journal of Computer Research and Development, 2000, 37(7):819-825. (in Chinese)
[11] 王永庆. 人工智能原理与方法[M]. 西安:西安交通大学出版社, 1998. WANG Y Q. Principles and methods of artificial intelligence[M]. Xi'an:Xi'an Jiaotong University Press, 1998. (in Chinese)
[12] 陈全, 邓倩妮. 云计算及其关键技术[J]. 计算机应用, 2009, 29(9):2562-2567. CHEN Q, DENG Q N. Cloud computing and its key techniques[J]. Journal of Computer Applications, 2009, 29(9):2562-2567. (in Chinese)
[13] MELL P, GRANCE T. The NIST definition of cloud computing:NIST Special Publication 800-145[S]. Gaithersburg:NIST, 2011.
[14] 袁勇, 王飞跃. 区块链技术发展现状与展望[J]. 自动化学报, 2016, 42(4):481-494. YUAN Y, WANG F Y. Blockchain:The state of the art and future trends[J]. Acta Automatica Sinica, 2016, 42(4):481-494. (in Chinese)
[15] 胡晶, 陈祖煜, 王玉杰, 等. 基于区块链的水利工程施工管理平台架构[J]. 水力发电学报, 2020, 39(11):40-48. HU J, CHEN Z Y, WANG Y J, et al. Architecture of construction management platform for hydraulic engineering based on block chain[J]. Journal of Hydroelectric Engineering, 2020, 39(11):40-48. (in Chinese)
[16] 《智慧水利总体方案》及《水利业务需求分析报告》通过水利部审查[J]. 水利技术监督, 2019(4):268. "Smart water conservancy overall plan" and "Water conservancy business demand analysis report" passed the review of the Ministry of Water Resources[J]. Technical Supervision in Water Resources, 2019(4):268. (in Chinese)
[17] 中华人民共和国住房和城乡建设部, 中华人民共和国国家发展和改革委员会, 中华人民共和国科学技术部, 等. 住房和城乡建设部等部门关于推动智能建造与建筑工业化协同发展的指导意见[J]. 江苏建材, 2020(5):1-3. Ministry of Housing and Urban-Rural Development of the People's Republic of China, National Development and Reform Commission, Ministry of Science and Technology of the People's Republic of China, et al. Guidance from ministry of housing and urban-rural development about promoting the coordinated development of intelligent construction and building industrialization[J]. Jiangsu Building Materials, 2020(5):1-3. (in Chinese)
[18] 李庆斌, 马睿, 胡昱, 等. 大坝智能建造理论[J]. 水力发电学报, 2022, 41(1):1-13. LI Q B, MA R, HU Y, et al. Theory of intelligent dam construction[J]. Journal of Hydroelectric Engineering, 2022, 41(1):1-13. (in Chinese)
[19] 李庆斌, 石杰. 大坝建设4.0[J]. 水力发电学报, 2015, 34(8):1-6. LI Q B, SHI J. Dam construction 4.0[J]. Journal of Hydroelectric Engineering, 2015, 34(8):1-6. (in Chinese)
[20] 张磊, 张国新. SAPTIS:结构多场仿真与非线性分析软件开发及应用(之三)[J]. 水利水电技术, 2014, 45(1):52-55, 76. ZHANG L, ZHANG G X. SAPTIS:Development and application of SAPTIS-software of multi-field simulation and nonlinear analysis of complex structures (Part III)[J]. Water Resources and Hydropower Engineering, 2014, 45(1):52-55, 76. (in Chinese)
[21] 王少伟, 顾冲时, 包腾飞. 基于MSC.Marc的高混凝土坝非线性时效变形量化的程序实现[J]. 中国科学:技术科学, 2019, 49(4):433-444. WANG S W, GU C S, BAO T F. Program implementation of quantifying the nonlinear time-dependent deformation of high concrete dams based on MSC.Marc[J]. SCIENTIA SINICA Technologica, 2019, 49(4):433-444. (in Chinese)
[22] 费康, 刘汉龙. ABAQUS的二次开发及在土石坝静、动力分析中的应用[J]. 岩土力学, 2010, 31(3):881-890. FEI K, LIU H L. Secondary development of ABAQUS and its application to static and dynamic analyses of earth-rockfill dam[J]. Rock and Soil Mechanics, 2010, 31(3):881-890. (in Chinese)
[23] 周绍武, 林鹏, 李庆斌, 等. 大坝移动式实时多点温度采集装置:CN102829894A[P]. 2012-08-21. ZHOU S W, LIN P, LI Q B, et al. Dam mobile real-time multi-point temperature acquisition device:CN102829894A[P]. 2012-08-21. (in Chinese)
[24] 彭虹. 混凝土坝应力应变监测仪器的应用研究[J]. 水电能源科学, 2014, 32(9):178-182. PENG H. Application study of instruments for stress strain monitoring on concrete dam[J]. Water Resources and Power, 2014, 32(9):178-182. (in Chinese)
[25] 艾斯克尔·努尔. 全球定位系统(GPS)技术在水利工程中的应用[J]. 水利技术监督, 2011, 19(2):30-31. NUER A. Application of GPS technology in water resources projects[J]. Technical Supervision in Water Resources, 2011, 19(2):30-31. (in Chinese)
[26] 康荣学, 张优云, 韩崇昭, 等. 混凝土生产输送浇注过程计算机综合监控系统[J]. 西安交通大学学报, 2001, 35(10):1072-1075. KANG R X, ZHANG Y Y, HAN C Z, et al. Synthetical monitoring system of the concrete production and transportation[J]. Journal of Xi'an Jiaotong University, 2001, 35(10):1072-1075. (in Chinese)
[27] 孙玉红, 雷永久. Microsoft Project项目管理软件在水利工程建设管理中的应用[J]. 黑龙江水利科技, 2014, 42(7):209-210. SUN Y H, LEI Y J. Application of Microsoft Project project management software in water conservancy project construction management[J]. Heilongjiang Science and Technology of Water Conservancy, 2014, 42(7):209-210. (in Chinese)
[28] 周厚贵. PERT网络软件的工程应用与展望[J]. 施工企业管理, 1995(7):39-40. ZHOU H G. Engineering application and prospect of PERT network software[J]. Construction Enterprise Management, 1995(7):39-40. (in Chinese)
[29] AZHAR S. Building information modeling (BIM):Trends, benefits, risks, and challenges for the AEC industry[J]. Leadership and Management in Engineering, 2011, 11(3):241-252.
[30] 李向东, 霍莉莉, 刘艳娟. 三维技术与BIM在水利设计行业的应用现状与发展探索[J]. 水利规划与设计, 2017(10):141-143, 167. LI X D, HUO L L, LIU Y J. Application status and development exploration of 3D technology and BIM in water conservancy design industry[J]. Water Resources Planning and Design, 2017(10):141-143, 167. (in Chinese)
[31] 韩丽伟. BIM技术在水利工程中的应用研究[J]. 科学技术创新, 2017(28):172-173. HAN L W. Research on the application of BIM technology in hydraulic engineering[J]. Scientific and Technological Innovation, 2017(28):172-173. (in Chinese)
[32] 徐宝善, 许天锁, 蒲金文. 三峡工程三期碾压混凝土围堰快速施工与数字化现场全过程监理[C]//全国2003年度碾压混凝土筑坝技术交流会论文集. 百色, 中国:中国水力发电工程学会, 中国水利学会, 2003. XU B S, XU T S, PU J W. The rapid construction of the third phase of the Three Gorges Project RCC cofferdam and the digital on-site supervision of the whole process[C]//National RCC Dam Technology Exchange Conference. Baise, China:China Hydropower Engineering Society, China Water Conservancy Society, 2003. (in Chinese)
[33] 陈豪. 基于GIS的小湾电站坝基监测信息系统构建与分析[D]. 昆明:昆明理工大学, 2008. CHEN H. Construction and analysis of GIS-based dam foundation monitoring information system for Xiaowan Hydropower Station[D]. Kunming:Kunming University of Science and Technology, 2008. (in Chinese)
[34] 钟登华, 刘东海, 郑家祥. 基于GIS的水电工程施工动态可视化仿真方法及其应用[J]. 水利学报, 2003(7):101-106. ZHONG D H, LIU D H, ZHENG J X. Dynamic visual simulation of hydro project construction based on GIS[J]. Journal of Hydraulic Engineering, 2003(7):101-106. (in Chinese)
[35] 苏怀智. 大坝安全监控感智融合理论和方法及应用研究[D]. 南京:河海大学, 2002. SU H Z. Intelligent sensing and fusion system and its application to dam safety monitoring[D]. Nanjing:Hohai University, 2002. (in Chinese)
[36] 余小戈, 王晓旭, 林钧岫, 等. 智能现场仪表在水库大坝自动化系统中应用[J]. 大连理工大学学报, 2002, 42(2):138-143. YU X G, WANG X X, LIN J X, et al. Application of intelligent field instrument to dam automatic monitoring system of reservoir[J]. Journal of Dalian University of Technology, 2002, 42(2):138-143. (in Chinese)
[37] 缑小凡. 自动化大坝安全监测及智能振弦压力数据采集系统[D]. 西安:西北工业大学, 2005. GOU X F. Automatic dam safety monitoring and intelligent vibrating wire pressure data acquisition system[D]. Xi'an:Northwestern Polytechnical University, 2005. (in Chinese)
[38] 刘观标. 南瑞大坝安全监测智能分布式工程安全自动监测系统[J]. 中国水利, 2006(6):67. LIU G B. Nanrui dam safety monitoring intelligent distributed engineering safety automatic monitoring system[J]. China Water Resources, 2006(6):67. (in Chinese)
[39] 钟登华, 刘东海, 郑家祥. 基于GIS的混凝土坝施工三维动态可视化仿真研究[J]. 系统工程理论与实践, 2003, 23(5):125-130. ZHONG D H, LIU D H, ZHENG J X. GIS-based three-dimension dynamic visual simulation for concrete dam construction process[J]. Systems Engineering-Theory & Practice, 2003, 23(5):125-130. (in Chinese)
[40] 马洪琪, 钟登华, 张宗亮, 等. 重大水利水电工程施工实时控制关键技术及其工程应用[J]. 中国工程科学, 2011, 13(12):20-27. MA H Q, ZHONG D H, ZHANG Z L, et al. Key technologies of real-time construction control for major hydraulic and hydroelectric projects[J]. Engineering Science, 2011, 13(12):20-27. (in Chinese)
[41] 杨杰, 方俊, 胡德秀, 等. 偏最小二乘法回归在水利工程安全监测中的应用[J]. 农业工程学报, 2007, 23(3):136-140. YANG J, FANG J, HU D X, et al. Application of partial least-squares regression to safety monitoring of water conservancy projects[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(3):136-140. (in Chinese)
[42] 黄仕俊, 赵华, 段会文, 等. 小湾水电站进水口高边坡监测及信息反馈研究[J]. 地下空间与工程学报, 2006, 2(6):1025-1028, 1033. HUANG S J, ZHAO H, DUAN H W, et al. Study of powerhouse intake vertical high slope monitoring and information feedback for Xiaowan hydropower project[J]. Chinese Journal of Underground Space and Engineering, 2006, 2(6):1025-1028, 1033. (in Chinese)
[43] 郭享. 小湾水电站施工总布置三维可视化建模与分析研究[D]. 天津:天津大学, 2005. GUO X. Study on three-dimensional visual modeling and analysis for construction site layout of Xiaowan hydropower station[D]. Tianjin:Tianjin University, 2005. (in Chinese)
[44] 马景山. 小湾水电厂安全管理信息化实践[J]. 现代职业安全, 2015(9):60-63. MA J S. Safety management informatization practice of Xiaowan hydropower plant[J]. Modern Occupational Safety, 2015(9):60-63. (in Chinese)
[45] 钟登华, 刘宁, 崔博. 基于数字监控的高心墙堆石坝施工场内交通仿真研究[J]. 水力发电学报, 2012, 31(6):223-230, 236. ZHONG D H, LIU N, CUI B. Study on traffic simulation for construction of high core rock-fill dam based on digital monitoring[J]. Journal of Hydroelectric Engineering, 2012, 31(6):223-230, 236. (in Chinese)
[46] 庞靖鹏. 关于推进"互联网+水利"的思考[J]. 中国水利, 2016(5):6-8. PANG J P. Considerations for promoting water development with "internet plus"[J]. China Water Resources, 2016(5):6-8. (in Chinese)
[47] 李庆斌, 林鹏. 论智能大坝[J]. 水力发电学报, 2014, 33(1):139-146. LI Q B, LIN P. Demonstration on intelligent dam[J]. Journal of Hydroelectric Engineering, 2014, 33(1):139-146. (in Chinese)
[48] 樊启祥, 张超然. 特高拱坝智能化建设技术创新和实践-300m级溪洛渡拱坝智能化建设[M]. 北京:清华大学出版社, 2018. FAN Q X, ZHANG C R. Intelligent construction technology innovation and practice of super-high arch-dam-intelligent construction of Xiluodu arch dam (300m-grade)[M]. Beijing:Tsinghua University Press, 2018. (in Chinese)
[49] 朱伯芳. 混凝土坝的数字监控[J]. 水利水电技术, 2008, 39(2):15-18. ZHU B F. Numerical monitoring of concrete dams[J]. Water Resources and Hydropower Engineering, 2008, 39(2):15-18. (in Chinese)
[50] 马洪琪, 钟登华, 张宗亮, 等. 重大水利水电工程施工实时控制关键技术及其工程应用[J]. 中国工程科学, 2011, 13(12):20-27. MA H Q, ZHONG D H, ZHANG Z L, et al. Key technologies of real-time construction control for major hydraulic and hydroelectric projects[J]. Strategic Study of CAE, 2011, 13(12):20-27. (in Chinese)
[51] ZHONG D H, CUI B, LIU D H, et al. Theoretical research on construction quality real-time monitoring and system integration of core rockfill dam[J]. Science in China Series E:Technological Sciences, 2009, 52(11):3406-3412.
[52] 崔博, 胡连兴, 刘东海. 高心墙堆石坝填筑施工过程实时监控系统研发与应用[J]. 中国工程科学, 2011, 13(12):91-96. CUI B, HU L X, LIU D H. Development and application of the real-time monitoring system for filling construction process of high core rock-fill dam[J]. Engineering Science, 2011, 13(12):91-96. (in Chinese)
[53] 吴楠. 浅谈数字大岗山的建设与实践[J]. 四川水力发电, 2019, 38(2):97-99, 112. WU N. Digitization construction and practice at Dagangshan hydropower station[J]. Sichuan Hydropower, 2019, 38(2):97-99, 112. (in Chinese)
[54] 韩兴. 长河坝水电站智能施工管理系统的开发与应用[J]. 水利水电施工, 2017(4):129-132. HAN X. Development and application of intelligent construction management system for Changheba Hydropower Station[J]. Water Resources and Hydropower Construction, 2017(4):129-132. (in Chinese)
[55] 卢吉, 崔博, 吴斌平, 等. 龙开口大坝浇筑碾压施工质量实时监控系统设计与应用[J]. 水力发电, 2013, 39(2):53-56, 63. LU J, CUI B, WU B P, et al. Design and application of real-time quality monitoring and control system for dam's roller compacted construction in longkaikou hydropower station[J]. Water Power, 2013, 39(2):53-56, 63. (in Chinese)
[56] 向弘, 杨梅, 郑爱武, 等. 数字黄登·大坝施工管理信息化系统的研发与应用[C]//水电可持续发展与碾压混凝土坝建设的技术进展:中国大坝协会2015学术年会论文集. 成都, 中国:中国大坝协会, 2015. XIANG H, YANG M, ZHENG A W, et al. Research and application of digital Huangdeng dam construction management information system[C]//Water Conservancy and Hydropower Concrete Dam Information Network. Chengdu, China:Water Conservancy and Hydropower Concrete Dam Information Network, 2015. (in Chinese)
[57] 康向文, 唐茂颖, 段斌, 等. 智慧工程理念下的双江口智能大坝工程系统建设[C]//土石坝技术2018年论文集. 水利水电土石坝工程信息网, 2019. KANG X W, TANG M Y, DUAN B, et al. The construction of Shuangjiangkou smart dam engineering system under the concept of smart engineering[C]//Proceedings of earth-rock dam technology 2018. Water Conservancy and Hydropower Earth Rock Dam Engineering Information Network, 2019. (in Chinese)
[58] 樊启祥, 林鹏, 魏鹏程, 等. 智能建造闭环控制理论[J]. 清华大学学报(自然科学版), 2021, 61(7):660-670. FAN Q X, LIN P, WEI P C, et al. Closed-loop control theory of intelligent construction[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(7):660-670. (in Chinese)
[59] 谭尧升, 樊启祥, 汪志林, 等. 白鹤滩特高拱坝智能建造技术与应用实践[J]. 清华大学学报(自然科学版), 2021, 61(7):694-704. TAN Y S, FAN Q X, WANG Z L, et al. Intelligent construction methods for the Baihetan super high arch dam[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(7):694-704. (in Chinese)
[60] 刘有志, 张国新, 谭尧升, 等. 仿真大坝建设关键技术与实践应用[J]. 清华大学学报(自然科学版), 2021, 61(7):714-723. LIU Y Z, ZHANG G X, TAN Y S, et al. Key techniques for dam construction simulations[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(7):714-723.
[61] CHEN B, YU X, DONG F Q, et al. Compaction quality evaluation of asphalt pavement based on intelligent compaction technology[J]. Journal of Construction Engineering and Management, 2021, 147(9):04021099.
[62] 徐建江, 陈文夫, 谭尧升, 等. 特高拱坝混凝土运输智能化关键技术与应用[J]. 清华大学学报(自然科学版), 2021, 61(7):768-776. XU J J, CHEN W F, TAN Y S, et al. Intelligent concrete transport methods for super-high arch dams[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(7):768-776. (in Chinese)
[63] 王飞, 刘金飞, 尹习双, 等. 高拱坝智能进度仿真理论与关键技术[J]. 清华大学学报(自然科学版), 2021, 61(7):756-767. WANG F, LIU J F, YIN X S, et al. Intelligent scheduling for high arch dams[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(7):756-767. (in Chinese)
[64] 钟桂良, 徐建江, 乔雨, 等. 混凝土振捣质量智能监控关键技术研究与应用[J]. 水利水电技术, 2020, 51(S2):422-426. ZHONG G L, XU J J, QIAO Y, et al. Study and application of key technology for intelligent monitoring and control of concrete vibration quality[J]. Water Resources and Hydropower Engineering, 2020, 51(S2):422-426. (in Chinese)
[65] 杨忠加, 周宜红, 胡超, 等. 基于高拱坝坝体生长特征的缆机调度仿真研究[J]. 水电能源科学, 2018, 36(5):158-162. YANG Z J, ZHOU Y H, HU C, et al. Study on cable machine scheduling simulation based on growth characteristics of high arch dam[J]. Water Resources and Power, 2018, 36(5):158-162. (in Chinese)
[66] 张国新, 李松辉, 刘毅, 等. 大体积混凝土防裂智能监控系统[J]. 水利水电科技进展, 2015, 35(5):83-88. ZHANG G X, LI S H, LIU Y, et al. Intelligent monitoring and control system for crack prevention of mass concrete[J]. Advances in Science and Technology of Water Resources, 2015, 35(5):83-88. (in Chinese)
[67] 梅杰, 李庆斌, 陈文夫, 等. 基于目标检测模型的混凝土坯层覆盖间歇时间超时预警[J]. 清华大学学报(自然科学版), 2021, 61(7):688-693. MEI J, LI Q B, CHEN W F, et al. Overtime warning of concrete pouring interval based on object detection model[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(7):688-693. (in Chinese)
[68] 魏永强, 宋子龙, 王祥. 基于物联网模式的水库大坝安全监测智能机系统设计[J]. 水利水电技术, 2015, 46(10):38-42. WEI Y Q, SONG Z L, WANG X. Design of internet of things based-intelligent machine system for dam safety monitoring[J]. Water Resources and Hydropower Engineering, 2015, 46(10):38-42. (in Chinese)
[69] 樊启祥, 张超然, 汪志林, 等. 白鹤滩水电站工程建设关键技术进展和突破[J]. 中国水利, 2019(18):9-14. FAN Q X, ZHANG C R, WANG Z L, et al. Introduction of key technologies for constructing Baihetan Hydropower Station[J]. China Water Resources, 2019(18):9-14. (in Chinese)
[70] 樊启祥, 陆佑楣, 周绍武, 等. 金沙江水电工程智能建造技术体系研究与实践[J]. 水利学报, 2019, 50(3):294-304. FAN Q X, LU Y M, ZHOU S W, et al. Research and practice on intelligent construction technology system of Jinsha River hydropower projects[J]. Journal of Hydraulic Engineering, 2019, 50(3):294-304. (in Chinese)
[71] 王瑞英, 朱等民, 郭炎椿. 智能灌浆技术在乌东德水电站帷幕灌浆中的应用[J]. 人民长江, 2020, 51(S2):200-202, 259. WANG R Y, ZHU D M, GUO Y C. Application of intelligent grouting technology in curtain grouting of Wudongde Hydropower Station[J]. Yangtze River, 2020, 51(S2):200-202, 259. (in Chinese)
[72] 柏龙君, 周绍武. 基于物联网的灌浆监测系统的应用研究[J]. 水利水电技术, 2013, 44(4):14-16. BAI L J, ZHOU S W. Study and application of Internet of Things (IOT) based grouting monitoring system[J]. Water Resources and Hydropower Engineering, 2013, 44(4):14-16. (in Chinese)
[73] 江汉臣, 林鹏, 强茂山. 基于实时定位系统的监理人员管理和评价[J]. 清华大学学报(自然科学版), 2015, 55(9):950-956, 963. JIANG H C, LIN P, QIANG M S. Supervisor management and evaluation method based on real-time tracking[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(9):950-956, 963. (in Chinese)
[74] 李庆斌, 马睿, 胡昱, 等. 大坝智能建造理论[M]. 北京:中国水利水电出版社, 2021. LI Q B, MA R, HU Y, et al. Theory of intelligent dam construction[M]. Beijing:China Water & Power Press, 2021. (in Chinese)
[75] 钟登华, 时梦楠, 崔博, 等. 大坝智能建设研究进展[J]. 水利学报, 2019, 50(1):38-52, 61. ZHONG D H, SHI M N, CUI B, et al. Research progress of the intelligent construction of dams[J]. Journal of Hydraulic Engineering, 2019, 50(1):38-52, 61. (in Chinese)
[76] 何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4):327-336. HE Q, LI N, LUO W J, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4):327-336. (in Chinese)
[77] 杨善林, 倪志伟. 机器学习与智能决策支持系统[M]. 北京:科学出版社, 2004. YANG S L, NI Z W. Machine learning and intelligent decision support system[M]. Beijing:Science Press, 2004. (in Chinese)
[78] GOLDBERG D E. Genetic algorithms in search, optimization, and machine learning[M]. New York:Addison-Wesley, 1989.
[79] 刘建伟, 刘媛, 罗雄麟. 深度学习研究进展[J]. 计算机应用研究, 2014, 31(7):1921-1930, 1942. LIU J W, LIU Y, LUO X L. Research and development on deep learning[J]. Application Research of Computers, 2014, 31(7):1921-1930, 1942. (in Chinese)
[80] SCHMIDHUBER J. Deep learning in neural networks:An overview[J]. Neural Networks, 2015, 61:85-117.
[81] EASTMAN C, TEICHOLZ P, SACKS R, et al. BIM handbook:A guide to building information modeling for owners, managers, designers, engineer[M]. 2nd ed. Hoboken:John Wiley & Sons, 2011.
[82] 胡世英, 王根元. 基于DIM为核心的智能大坝系统平台的认知与应用[J]. 水电站设计, 2019, 35(1):22-25. HU S Y, WANG G Y. Cognition and application of intelligent dam system platform based on DIM[J]. Design of Hydroelectric Power Station, 2019, 35(1):22-25. (in Chinese)
[83] UHLEMANN H J, LEHMANN C, STEINHILPER R. The digital twin:Realizing the cyber-physical production system for industry 4.0[J]. Procedia CIRP, 2017, 61:335-340.
[84] 陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1):1-9. TAO F, ZHANG M, CHENG J F, et al. Digital twin workshop:A new paradigm for future workshop[J]. Computer Integrated Manufacturing System, 2017, 23(1):1-9. (in Chinese)
[85] 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4):753-768. ZHUANG C B, LIU J H, XIONG H, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing System, 2017, 23(4):753-768. (in Chinese)
[86] 王飞跃. 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004, 19(5):485-489, 514. WANG F Y. Parallel system methods for management and control of complex systems[J]. Control and Decision, 2004, 19(5):485-489, 514. (in Chinese)
[87] 刘昕, 王晓, 张卫山, 等. 平行数据:从大数据到数据智能[J]. 模式识别与人工智能, 2017, 30(8):673-681. LIU X, WANG X, ZHANG W S, et al. Parallel data:From big data to data intelligence[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(8):673-681. (in Chinese)
[88] 王飞跃. 人工社会、计算实验、平行系统——关于复杂社会经济系统计算研究的讨论[J]. 复杂系统与复杂性科学, 2004, 1(4):25-35. WANG F Y. Artificial societies, computational experiments, and parallel systems:A discussion on computational theory of complex social-economic systems[J]. Complex Systems and Complexity Science, 2004, 1(4):25-35. (in Chinese)
[89] 王飞跃. 基于ACP方法的平行计算:从分而治之到扩而治之[J]. 软件和集成电路, 2019(9):30-31. WANG F Y. Parallel computing based on the ACP method:From divide and conquer to expansion and conquer[J]. Software and Integrated Circuit, 2019(9):30-31. (in Chinese)
[90] 王飞跃. 平行控制与数字孪生:经典控制理论的回顾与重铸[J]. 智能科学与技术学报, 2020, 2(3):293-300. WANG F Y. Parallel control and digital twins:Control theory revisited and reshaped[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3):293-300. (in Chinese)
[91] 杨林瑶, 陈思远, 王晓, 等. 数字孪生与平行系统:发展现状、对比及展望[J]. 自动化学报, 2019, 45(11):2001-2031. YANG L Y, CHEN S Y, WANG X, et al. Digital twins and parallel systems:State of the art, comparisons and prospect[J]. Acta Automatica Sinica, 2019, 45(11):2001-2031. (in Chinese)
[92] 黄鹏嘉, 王广铭, 王之龙. "智慧大藤峡"顶层设计[J]. 中国水利, 2020(4):18-20. HUANG P J, WANG G M, WANG Z L. Top-level design of "Intelligent Datengxia"[J]. China Water Resources, 2020(4):18-20. (in Chinese)
[93] AN Z Z, LIU T Y, ZHANG Z S, et al. Dynamic optimization of compaction process for rockfill materials[J]. Automation in Construction, 2020, 110:103038.
[94] 张磊, 张国新, 刘毅, 等. 数字黄登大坝混凝土温控智能监控系统的开发和应用[J]. 水利水电技术, 2019, 50(6):108-114. ZHANG L, ZHANG G X, LIU Y, et al. Development and application of digitalized intelligent concrete temperature control system for Huangdeng Dam[J]. Water Resources and Hydropower Engineering, 2019, 50(6):108-114. (in Chinese)
[95] 钟登华, 王飞, 吴斌平, 等. 从数字大坝到智慧大坝[J]. 水力发电学报, 2015, 34(10):1-13. ZHONG D H, WANG F, WU B P, et al. From digital dam toward smart dam[J]. Journal of Hydroelectric Engineering, 2015, 34(10):1-13. (in Chinese)
[96] 樊启祥, 张超然, 陈文斌, 等. 乌东德及白鹤滩特高拱坝智能建造关键技术[J]. 水力发电学报, 2019, 38(2):22-35. FAN Q X, ZHANG C R, CHEN W B, et al. Key technologies of intelligent construction of Wudongde and Baihetan super high arch dams[J]. Journal of Hydroelectric Engineering, 2019, 38(2):22-35. (in Chinese)
[97] 唐海涛, 王国光, 张业星, 等. 水电工程混凝土监控系统研究与应用[J]. 大坝与安全, 2019(4):53-57. TANG H T, WANG G G, ZHANG Y X, et al. Research and application of concrete monitoring system for hydropower projects[J]. Dam & Safety, 2019(4):53-57. (in Chinese)
[98] 杜关, 陈波, 杨洪. GPS碾压监控系统在土石坝施工质量管理中的应用[J]. 水电站设计, 2012, 28(S1):111-113. DU G, CHEN B, YANG H. The application of GPS rolling monitoring system in the quality management of earth-rock dam construction[J]. Design of Hydroelectric Power Station, 2012, 28(S1):111-113. (in Chinese)
[99] 司红云, 曹邱林, 郑东健. 基于神经网络的大坝参数反演法[J]. 水利与建筑工程学报, 2003, 1(4):22-23, 30. SI H Y, CAO Q L, ZHENG D J. Artificial neural network method on back analysis of dam parameter[J]. Journal of Water Resources and Architectural Engineering, 2003, 1(4):22-23, 30. (in Chinese)[WX)] [WX(3KG0,25*2]
[100] 杨杰, 顾冲时, 吴中如. 大坝变形监测的BP网络模型与预报研究[J]. 西安理工大学学报, 2001, 17(1):25-29. YANG J, GU C S, WU Z R. Dam deformation monitoring model and forecast based on BP algorithm of artificial neural networks[J]. Journal of Xi'an University of Technology, 2001, 17(1):25-29. (in Chinese)
[101] 王峰, 周宜红, 赵春菊, 等. 基于混合粒子群算法的特高拱坝不同材料热学参数反演分析[J]. 清华大学学报(自然科学版), 2021, 61(7):747-755. WANG F, ZHOU Y H, ZHAO C J, et al. Thermal parameter inversion for various materials of super high arch dams based on the hybrid particle swarm optimization method[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(7):747-755. (in Chinese)
[102] 蔡永强. 大坝随机裂缝的光纤智能检测、预警系统设计[J]. 广西水利水电, 2005(S1):5-8. CAI Y Q. Design of optical fiber intelligent check measurement and forecasting system for random crack of dam[J]. Guangxi Water Resources & Hydropower Engineering, 2005(S1):5-8. (in Chinese)
[103] 张本秋, 王淼, 张学宝. 碾压式土石坝施工的质量控制要点[J]. 水利科技与经济, 2007, 13(7):512. ZHANG B Q, WANG M, ZHANG X B. The key points of quality control in the construction of roller compacted earth-rock dams[J]. Water Conservancy Science and Technology and Economy, 2007, 13(7):512. (in Chinese)
[104] 刘东海, 王爱国, 柳育刚, 等. 基于碾轮振动性态分析的土石坝压实质量实时监测与评估[J]. 水利学报, 2014, 45(2):163-170. LIU D H, WANG A G, LIU Y G, et al. Real-time monitoring and assessment of compaction quality for earth-rock dam basing on roller vibration behavior analysis[J]. Journal of Hydraulic Engineering, 2014, 45(2):163-170. (in Chinese)
[105] MEEHAN C L, CACCIOLA D V, TEHRANI F S, et al. Assessing soil compaction using continuous compaction control and location-specific in situ tests[J]. Automation in Construction, 2017, 73:31-44.
[106] 郭婷婷. 基于物联网模式的智能大坝安全监测预警系统研究[J]. 数码世界, 2017(10):257. GUO T T. Research on smart dam safety monitoring and early warning system based on the Internet of Things model[J]. Digital Space, 2017(10):257. (in Chinese)
[107] 张磊, 张国新, 刘毅, 等. 数字黄登大坝混凝土温控智能监控系统的开发和应用[J]. 水利水电技术, 2019, 50(6):108-114. ZHANG L, ZHANG G X, LIU Y, et al. Development and application of digitalized intelligent concrete temperature control system for Huangdeng Dam[J]. Water Resources and Hydropower Engineering, 2019, 50(6):108-114. (in Chinese)
[108] 张娜. 大坝安全三维动态全视景智能管理方法研究[D]. 哈尔滨:哈尔滨工程大学, 2019. ZHANG N. Research on three-dimension dynamic panoramic intelligent management method for dam safety[D]. Harbin:Harbin Engineering University, 2019. (in Chinese)
[109] 黄华东, 郭张军. 大坝安全智能监控模型对比分析研究[J]. 中国水运, 2019, 19(6):71-73. HUANG H D, GUO Z J. Comparative analysis of dam safety intelligent monitoring models[J]. China Water Transport, 2019, 19(6):71-73. (in Chinese)
[110] AN X H, ZHOU L, LIU Z G, et al. Dataset and benchmark for detecting moving objects in construction sites[J]. Automation in Construction, 2021, 122:103482.
[111] 王龙宝, 赵杰. 基于物联网的水利施工机械远程智能监控系统研究[J]. 水利经济, 2012, 30(1):31-35. WANG L B, ZHAO J. Remote intelligent monitoring system for water conservancy construction machinery based on IOT[J]. Journal of Economics of Water Resources, 2012, 30(1):31-35. (in Chinese)
[112] 刘成栋, 向衍, 张士辰, 等. 水库大坝安全智能巡检系统设计与实现[J]. 中国水利, 2018(20):39-41. LIU C D, XIANG Y, ZHANG S C, et al. The design and implementation of intelligent inspection system of reservoir dams based on big data[J]. China Water Resources, 2018(20):39-41. (in Chinese)
[113] 董永, 周建波. 水电站大坝安全智能巡检系统研究与设计[J]. 大坝与安全, 2020(1):1-5. DONG Y, ZHOU J B. Research and design of dam safety intelligent inspection system for hydropower stations[J]. Dam & Safety, 2020(1):1-5. (in Chinese)
[114] 李斌. 基于多目标遗传算法的水利工程施工进度计划优化[D]. 保定:河北农业大学, 2009. LI B. Optimization of water engineer construction programmer based on multi-objective genetic algorithm[D]. Baoding:Hebei Agricultural University, 2009. (in Chinese)
[115] 焦梅. 水利工程项目施工成本控制与管理优化研究[J]. 智能城市, 2017, 3(7):237. JIAO M. Research on construction cost control and management optimization of water conservancy projects[J]. Intelligent City, 2017, 3(7):237. (in Chinese)
[116] ZHANG Q L, LIU T Y, ZHANG Z S, et al. Unmanned rolling compaction system for rockfill materials[J]. Automation in Construction, 2019, 100:103-117.
[117] 陈广森. 水利水电工程智能化"工期-费用"综合控制方法[C]//水库大坝高质量建设与绿色发展——中国大坝工程学会2018学术年会论文集. 郑州, 中国:中国大坝工程学会, 2018. CHEN G S. Intelligent "construction period-cost" comprehensive control method for water conservancy and hydropower engineering[C]//High-Quality Construction and Green Development of Reservoir Dams-China Dam Engineering Society 2018 Academic Conference. Zhengzhou, China:China Society of Dam Engineering, 2018. (in Chinese)
[118] 陆华. 浅谈水利工程造价管理的智能化发展[J]. 陕西水利, 2020(3):137-138, 142. LU H. Talking about the intelligent development of water conservancy project cost management[J]. Shaanxi Water Resources, 2020(3):137-138, 142. (in Chinese)
[119] 金强国. 基于遗传算法的大坝土石料运输智能动态调配应用研究[D]. 天津:天津大学, 2017. JIN Q G. Research of intelligent and dynamic allocation for dam soil stone material transportation based on genetic algorithm[D]. Tianjin:Tianjin University, 2017. (in Chinese)
[120] 钟登华, 任炳昱, 宋文帅, 等. 高拱坝建设进度与质量智能控制关键技术及其应用研究[J]. 水利水电技术, 2019, 50(8):8-17. ZHONG D H, REN B Y, SONG W S, et al. Study on key techniques for intelligent control of construction progress and quality of high arch dam and their applications[J]. Water Resources and Hydropower Engineering, 2019, 50(8):8-17. (in Chinese)
[121] SARIDIS G N. Toward the realization of intelligent controls[J]. Proceedings of the IEEE, 1979, 67(8):1115-1133.
[122] 杨宁, 刘毅, 乔雨, 等. 大体积混凝土仓面智能喷雾控制模型[J]. 清华大学学报(自然科学版), 2021, 61(7):724-729. YANG N, LIU Y, QIAO Y, et al. Intelligent spray control for the concrete curing of mass concrete bins[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(7):724-729. (in Chinese)
[123] 林鹏, 宁泽宇, 李明, 等. 特高拱坝通水冷却管网智能联控原型试验研究[J]. 水利学报, 2021, 52(7):819-828. LIN P, NING Z Y, LI M, et al. Study on prototype intelligent control test of cooling pipeline for a super-high arch dam[J]. Journal of Hydraulic Engineering, 2021, 52(7):819-828. (in Chinese)
[124] 毛良明, 沈省三, 肖美蓉. 物联网时代来临大坝安全监测技术的未来思考[J]. 大坝与安全, 2011(1):11-13. MAO L M, SHEN S S, XIAO M R. Consideration on the future technology of dam safety monitoring systems in IOT era[J]. Dam & Safety, 2011(1):11-13. (in Chinese)
[125] 周丹. 无线传感网络在大坝安全监测中的应用研究[D]. 武汉:武汉理工大学, 2008. ZHOU D. Application research of WSN in dam safety monitoring[D]. Wuhan:Wuhan University of Technology, 2008. (in Chinese)
[126] 乔静. 基于ZIGBEE的大坝安全监测系统设计[D]. 大连:大连理工大学, 2012. QIAO J. Design of dam safety monitoring system based on ZIGBEE[D]. Dalian:Dalian University of Technology, 2012. (in Chinese)
[127] 沈乔楠, 安雪晖, 于玉贞. 基于视觉信息的堆石质量评价[J]. 清华大学学报(自然科学版), 2013, 53(1):48-52. SHEN Q N, AN X H, YU Y Z. Rock-filled quality evaluation based on visual information[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(1):48-52. (in Chinese)
[1] 王昀, 胡珉, 塔娜, 孙海涛, 郭毅峰, 周武爱, 郭昱, 张皖哲, 冯建华. 大语言模型及其在政务领域的应用[J]. 清华大学学报(自然科学版), 2024, 64(4): 649-658.
[2] 徐鹏飞, 陈梅雅, 开艳, 王子鹏, 李新宇, 万刚, 王延杰. 大型水电站坝体检测水下机器人研究进展[J]. 清华大学学报(自然科学版), 2023, 63(7): 1032-1040.
[3] 王雷, 王晓玲, 张君, 余佳, 王佳俊. 考虑融合权重优化与冲突信息来源的大坝安全综合评价方法[J]. 清华大学学报(自然科学版), 2023, 63(10): 1566-1575.
[4] 刘天云. 大型填筑工程3D打印技术与应用[J]. 清华大学学报(自然科学版), 2022, 62(8): 1281-1291.
[5] 陆思聪, 李春文. 基于场景与话题的聊天型人机会话系统[J]. 清华大学学报(自然科学版), 2022, 62(5): 952-958.
[6] 李瑞敏, 王长君. 智能交通管理系统发展趋势[J]. 清华大学学报(自然科学版), 2022, 62(3): 509-515.
[7] 张昊, 马羚, 田士川, 郭红领. 智能施工平台关键作业场景、要素及发展路径[J]. 清华大学学报(自然科学版), 2022, 62(2): 215-220.
[8] 樊启祥, 林鹏, 魏鹏程, 宁泽宇, 李果. 智能建造闭环控制理论[J]. 清华大学学报(自然科学版), 2021, 61(7): 660-670.
[9] 谭尧升, 樊启祥, 汪志林, 陈文夫, 郭增光, 林恩德, 林鹏, 周天刚, 周孟夏, 刘春风, 龚攀, 裴磊. 白鹤滩特高拱坝智能建造技术与应用实践[J]. 清华大学学报(自然科学版), 2021, 61(7): 694-704.
[10] 陈志恒, 荣冠, 谭尧升, 张子阳, 王克祥, 罗贯军. 白鹤滩大坝三维渗流场仿真与渗控效果评价[J]. 清华大学学报(自然科学版), 2021, 61(7): 705-713,723.
[11] 刘有志, 张国新, 谭尧升, 刘春风, 龚攀, 裴磊. 仿真大坝建设关键技术与实践应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 714-723.
[12] 杨宁, 刘毅, 乔雨, 谭尧升, 朱振泱. 大体积混凝土仓面智能喷雾控制模型[J]. 清华大学学报(自然科学版), 2021, 61(7): 724-729.
[13] 赵日, 刘立业, 李君利. 基于主成分分析和Mahalanobis距离的异常γ能谱识别[J]. 清华大学学报(自然科学版), 2017, 57(8): 826-831.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn