Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (8): 1314-1320    DOI: 10.16511/j.cnki.qhdxxb.2022.25.015
  智能预测反馈 本期目录 | 过刊浏览 | 高级检索 |
利用多项式混沌展开的结构可靠性分析
张明1, 王恩志1, 刘耀儒1, 齐文彪2, 王德辉3
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084;
2. 吉林省水利水电勘测设计研究院, 长春 130021;
3. 福州大学 土木工程学院, 福州 350116
Reliability analysis of structures using polynomial chaos expansions
ZHANG Ming1, WANG Enzhi1, LIU Yaoru1, QI Wenbiao2, WANG Dehui3
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. Jilin Province Water Resource and Hydropower Consultative Company, Changchun 130021, China;
3. College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
全文: PDF(1037 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 实际工程设计优化、设计空间搜索、灵敏度分析、可靠性分析等问题,若单次模拟比较费时,直接用原模型进行数千、甚至数百万次模拟是不可能完成的任务。多项式混沌展开方法是解决这类问题的有效方法,其方法表达和程序实现是应用中关注的重点问题。该文介绍了多项式混沌展开方法的数学理论,并将之用于结构可靠性分析。首先,将结构可靠性分析的功能响应函数以多项式混沌展开表示,其中统一采用Hermite多项式。给出Hermite多项式的一种适合计算机程序生成的通项形式,实现多项式混沌展开的计算程序的通用化,以及多项式次数的自适应选择。其次,利用具有显式功能函数的结构可靠性分析算例,考察所构建的代理模型的正确性和适用性。结果表明,多项式混沌展开的次数越高,模型的精度就越高,具有良好的收敛性,同时表明仅就考察代理模型而言,利用显式功能函数是最简便的方式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张明
王恩志
刘耀儒
齐文彪
王德辉
关键词 优化设计结构可靠性多项式混沌展开Hermite多项式功能函数    
Abstract:Practical engineering issues such as design optimization, design space exploration, sensitivity analyses, and reliability analyses need many simulations. If a single simulation is very time-consuming, engineers cannot perform the thousands or even millions of simulations needed for such analyses. The polynomial chaos expansion (PCE) method is an effective method that allows analyses of complex problems. This paper introduces the mathematical theory of the PCE method and presents a structural reliability analysis example. The performance response function for the structural reliability analysis is expressed as a PCE using Hermite polynomials. A general form of the Hermite polynomial, which is suitable for use in a computer program, is used to generalize the PCE analysis program and the adaptive selection of the polynomial order. Then, the accuracy and applicability of the surrogate model are verified using structural reliability analysis examples with explicit performance functions. The results show that the model has an excellent convergence rate with higher order PCE giving higher accuracy. The examples also show that the direct use of explicit performance functions is the easiest way to investigate PCE surrogate models.
Key wordsoptimal design    structural reliability    polynomial chaos expansion (PCE)    Hermite polynomial    performance function
收稿日期: 2021-11-04      出版日期: 2022-03-31
基金资助:国家自然科学基金重大项目(52090081);清华大学水沙科学与水利水电工程国家重点实验室开放基金资助项目(sklhse-2021-C-03)
作者简介: 张明(1965—),男,副教授。E-mail:mzhang@tsinghua.edu.cn
引用本文:   
张明, 王恩志, 刘耀儒, 齐文彪, 王德辉. 利用多项式混沌展开的结构可靠性分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1314-1320.
ZHANG Ming, WANG Enzhi, LIU Yaoru, QI Wenbiao, WANG Dehui. Reliability analysis of structures using polynomial chaos expansions. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1314-1320.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.015  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I8/1314
  
  
[1] CHOI S K, GRANDHI R V, CANFIELD R A. Reliability-based structural design[M]. London:Springer, 2007.
[2] 侯少康, 刘耀儒. 双护盾TBM掘进数值仿真及护盾卡机控制因素影响分析[J]. 清华大学学报(自然科学版), 2021, 61(8):809-817. HOU S K, LIU Y R. Numerical simulations of double-shield TBM tunneling for analyzing shield jamming control factors[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(8):809-817. (in Chinese)
[3] 熊芬芬, 杨树兴, 刘宇, 等. 工程概率不确定性分析方法[M]. 北京:科学出版社, 2015. XIONG F F, YANG S X, LIU Y, et al. Probabilistic uncertainty analysis methods for engineering problems[M]. Beijing:Science Press, 2015. (in Chinese)
[4] 张明, 金峰. 结构可靠度计算[M]. 北京:科学出版社, 2015. ZHANG M, JIN F. Structural reliability computations[M]. Beijing:Science Press, 2015. (in Chinese)
[5] 赵威. 结构可靠度分析代理模型方法研究[D]. 哈尔滨:哈尔滨工业大学, 2012. ZHAO W. Study on surrogate model methods for structural reliability analysis[D]. Harbin:Harbin Institute of Technology, 2012. (in Chinese)
[6] BAROTH J, SCHOEFS F, BREYSSE D. Construction reliability:Safety, variability and sustainability[M]. Hoboken:John Wiley & Sons, 2013.
[7] PETTERSSON M P, IACCARINO G, NORDSTRÖM J. Polynomial chaos methods for hyperbolic partial differential equations[M]. Cham:Springer, 2015.
[8] PELLEGRINI G. Polynomial chaos expansion with applications to PDEs[D]. Verona:University of Verona, 2013.
[9] XU J, WANG D. Structural reliability analysis based on polynomial chaos, Voronoi cells and dimension reduction technique[J]. Reliability Engineering & System Safety, 2019, 185:329-340.
[10] YU H, GILLOT F, ICHCHOU M. A polynomial chaos expansion based reliability method for linear random structures[J]. Advances in Structural Engineering, 2012, 15(12):2097-2111.
[11] HAWCHAR L, EL SOUEIDY C P, SCHOEFS F. Time-variant reliability analysis using polynomial chaos expansion[C]//12th International Conference on Applications of Statistics and Probability in Civil Engineering. Vancouver, Canada:ICASP, 2015.
[12] CLARICH A, MARCHI M, RIGONI E, et al. Reliability-based design optimization applying polynomialchaos expansion:Theory and applications[C]//10th World Congress on Structural and Multidisciplinary Optimization. Orlando, USA, 2013.
[13] 李典庆, 蒋水华. 边坡可靠度非侵入式随机分析方法[M]. 北京:科学出版社, 2016. LI D Q, JIANG S H. Non-intrusive stochastic analysis method of slope reliability[M]. Beijing:Science Press, 2016. (in Chinese)
[14] 蒋水华, 冯晓波, 李典庆, 等. 边坡可靠度分析的非侵入式随机有限元法[J]. 岩土力学, 2013, 34(8):2347-2354. JIANG S H, FENG X B, LI D Q, et al. Reliability analysis of slope using non-intrusive stochastic finite element method[J]. Rock and Soil Mechanics, 2013, 34(8):2347-2354. (in Chinese)
[15] HALDAR A, MAHADEVAN S. Reliability assessment using stochastic finite element analysis[M]. New York:John Wiley & Sons, 2000.
[16] O'HAGAN A. Polynomial chaos:A tutorial and critique from a statistician's perspective[EB/OL]. (2013-03-24). http://www.tonyohagan.co.uk/academic/pdf/Polynomial-chaos.pdf.
[17] XIU D B. Generalized (Wiener-Askey) polynomial chaos[D]. Providence:Brown University, 2004.
[18] WüNSCHE A. Hermite and Laguerre 2D polynomials[J]. Journal of Computational and Applied Mathematics, 2001, 133(1-2):665-678.
[19] 蒋水华, 张曼, 李典庆. 基于Hermite正交多项式逼近法的重力坝可靠度分析[J]. 武汉大学学报(工学版), 2011, 44(2):170-174. JIANG S H, ZHANG M, LI D Q. Reliability analysis of gravity dam using Hermite orthogonal polynomials approximation method[J]. Engineering Journal of Wuhan University, 2011, 44(2):170-174. (in Chinese)
[20] 吕泰仁, 吴世伟. 用几何法求构件的可靠指标[J]. 河海大学学报(自然科学版), 1988, 16(5):86-93. LYU T R, WU S W. Geometric method for solving reliability index of structures[J]. Journal of Hohai University (Natural Sciences), 1988, 16(5):86-93. (in Chinese)
[1] 王啸宸, 李雪松, 任晓栋, 吴宏, 顾春伟. 多级压气机通流与CFD一体化优化设计方法[J]. 清华大学学报(自然科学版), 2022, 62(4): 774-784.
[2] 杨继锋, 姚蕊, 陈捷. 索牵引弹体装填机器人的尺寸优化设计[J]. 清华大学学报(自然科学版), 2021, 61(3): 217-223.
[3] 赵越, 强茂山, 王淏. EPC项目业主与承包商设计决策博弈[J]. 清华大学学报(自然科学版), 2021, 61(10): 1195-1201.
[4] 李东杰, 周伯豪, 梁骞, 兰旭东. 微型涡喷发动机燃烧室优化设计[J]. 清华大学学报(自然科学版), 2021, 61(10): 1212-1220.
[5] 薛春辉, 董玉杰. 自然循环熔盐球床堆中间换热器的优化设计[J]. 清华大学学报(自然科学版), 2018, 58(5): 445-449.
[6] 张铁山, 蒋晓华. 基于RB-IGBT的矩阵变换器中杂散电感的影响与优化[J]. 清华大学学报(自然科学版), 2017, 57(11): 1212-1219.
[7] 肖武, 王开锋, 姜晓滨, 贺高红. 遗传-模拟退火算法优化设计管壳式换热器[J]. 清华大学学报(自然科学版), 2016, 56(7): 728-734.
[8] 孙靖譞, 吕振华. 车辆受垂向强冲击时座椅安全带的防护效果比较分析与锚点位置优化[J]. 清华大学学报(自然科学版), 2016, 56(12): 1302-1311.
[9] 李培元, 顾春伟, 宋寅. 某MW级燃机低压离心压气机优化设计[J]. 清华大学学报(自然科学版), 2015, 55(10): 1110-1116.
[10] 韩俊, 温风波, 赵广播. 小展弦比涡轮叶片的弯曲优化设计[J]. 清华大学学报(自然科学版), 2014, 54(1): 102-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn