Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (4): 655-662    DOI: 10.16511/j.cnki.qhdxxb.2022.25.039
  综述 本期目录 | 过刊浏览 | 高级检索 |
面向能源转型的化石能源与可再生能源制氢技术进展
李爽1,2, 史翊翔1,2, 蔡宁生1,2
1. 清华大学 能源与动力工程系, 北京 100084;
2. 清华大学 山西清洁能源研究院, 太原 030032
Progress in hydrogen production from fossil fuels and renewable energy sources for the green energy revolution
LI Shuang1,2, SHI Yixiang1,2, CAI Ningsheng1,2
1. Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China;
2. Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, China
全文: PDF(11386 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 氢能是来源丰富、绿色低碳和应用广泛的二次能源,正逐步成为未来能源绿色转型发展的重要载体之一,是现有能源形式的有益补充,也是未来能源体系的重要组成部分。该文介绍了清华大学能源与动力工程系在制氢领域取得的基础研究和应用开发的系列成果。在碳氢燃料重整领域,合成了烧绿石负载型重整通用催化剂,开发了全系列重整制氢样机;在中温氢气净化领域,提出了中温净化新途径并合成了覆盖全温区的氮基活性炭疏水吸附剂及水滑石基吸附剂,完成了中温变压吸附H2/CO2分离技术示范;在可再生能源电解领域,依托固体氧化物电解池实现了二氧化碳与水共电解制取燃料、升高反应温度以降低水理论分解电压,从而缩减了碱水电解能耗。发展制氢技术是氢能燃料电池产业的首要技术环节,有助于推进未来能源利用方式变革,是构建低碳、安全和高效现代能源体系的重要举措。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李爽
史翊翔
蔡宁生
关键词 氢能与燃料电池重整制氢中温变压吸附电解    
Abstract:Hydrogen energy is an widely used, abundant, green, low-carbon energy carrier. Hydrogen is gradually becoming one of the most important energy carriers for our future green energy transformation. This paper provides a detailed introduction to the basic and applied research achievements in various fields related to hydrogen production made by the Department of Energy and Power Engineering, Tsinghua University. A pyrochrite catalyst was synthesized for hydrocarbon fuel reforming with prototype hydrogen reforming units then used to evaluate the catalyst effectiveness. An elevated temperature purification process was developed for elevated temperature hydrogen production using both a nitrogen-modified activated carbon hydrophobic adsorbent and a layered double hydroxide based adsorbent for the entire temperature range which can provide on-site H2/CO2 separation using elevated temperature pressure swing adsorption. For electrolysis using renewable energy sources, the co-electrolysis of carbon dioxide and water to produce hydrogen was realized in a solid oxide electrolytic cell with the energy consumption of the alkaline water electrolysis reduced by raising the temperature to reduce the theoretical water decomposition voltage. These results contribute to the international hydrogen fuel cell industry developing efficient hydrogen production technologies that will boost the transformation of future energy utilization systems as a crucial step towards building a low-carbon, safe and efficient modern energy system.
Key wordshydrogen fuel cells    hydrogen production by reforming    elevated temperature pressure swing adsorption    electrolysis
收稿日期: 2022-01-04      出版日期: 2022-04-14
基金资助:史翊翔,教授,E-mail:shyx@tsinghua.edu.cn
引用本文:   
李爽, 史翊翔, 蔡宁生. 面向能源转型的化石能源与可再生能源制氢技术进展[J]. 清华大学学报(自然科学版), 2022, 62(4): 655-662.
LI Shuang, SHI Yixiang, CAI Ningsheng. Progress in hydrogen production from fossil fuels and renewable energy sources for the green energy revolution. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 655-662.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.039  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I4/655
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 中国氢能源及燃料电池产业创新战略联盟. 中国氢能源及燃料电池产业白皮书(2020)[R]. 北京:人民日报出版社, 2021.National Alliance of Hydrogen and Fuel Cell. White paper of hydrogen energy and fuel cell industry in China 2020[R]. Beijing:People's Daily Publishing House, 2021. (in Chinese)
[2] 马朝, 程泽东, 何雅玲. 相变储热型太阳能甲醇重整反应器稳态及动态制氢特性的实验研究[J]. 清华大学学报(自然科学版), 2021, 61(12):1371-1378.MA Z, CHENG Z D, HE Y L. Experimental study of the steady and dynamic efficiencies of a solar methanol steam reforming reactor filled with a phase change material for hydrogen production[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12):1371-1378. (in Chinese)
[3] HYDROGEN COUNCIL. Hydrogen scaling up, a sustainable pathway for the global energy transition[R]. Brussels:Hydrogen Council, 2017.
[4] OLAH G A, GOEPPERT A, PRAKASH G K S. Beyond oil and gas:The methanol economy[M]. 2nd ed. Germany:Wiley-VCH, 2009.
[5] 曹军文, 郑云, 张文强, 等. 能源互联网推动下的氢能发展[J]. 清华大学学报(自然科学版), 2021, 61(4):302-311.CAO W J, ZHENG Y, ZHANG W Q, et al. Hydrogen energy development driven by the Energy Internet[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(4):302-311. (in Chinese)
[6] 史翊翔, 李爽, 李林, 等. 燃料重整催化剂前驱体、催化剂以及制备方法和应用:202111071762.7[P]. 2021-09-14. SHI Y X, LI S, LI L, et al. A fuel reforming catalyst precursor, fuel reforming catalyst and its preparation and application:202111071762.7[P]. 2021-09-14. (in Chinese)
[7] 史翊翔, 李爽, 吴磊, 等. 碳氢燃料重整中温净化制氢方法、设备和燃料电池供能系统:202111390118.6[P]. 2021-11-23. SHI Y X, LI S, WU L, et al. Hydrogen production by hydrocarbon fuel reforming and elevated temperature purification, its method, equipment and fuel cell energy supply system:202111390118.6[P]. 2021-11-23. (in Chinese)
[8] 李爽. 水滑石基吸附剂中温H2/CO2分离的试验研究[D]. 北京:清华大学, 2016.LI S. Experimental investigation on layered double hydroxide based adsorbent for H2/CO2 separation at elevated temperature[D]. Beijing:Tsinghua University, 2016. (in Chinese)
[9] CARVILL B T, HUFTON J R, ANAND M, et al. Sorption-enhanced reaction process[J]. AIChE Journal, 1996, 42(10):2765-2772.
[10] ALPTEKIN G O, JAYARAMAN A, DIETZ S, et al. A low cost, high capacity regenerable sorbent for pre-combustion CO2 capture[R]. Wheat Ridge:TDA Research Inc., 2012.
[11] BOON J, COBDEN P D, VAN DIJK H A J, et al. High-temperature pressure swing adsorption cycle design for sorption-enhanced water-gas shift[J]. Chemical Engineering Science, 2015, 122:219-231.
[12] ZHU X, LI S, SHI Y, et al. Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production[J]. Progress in Energy and Combustion Science, 2019, 75:100784. https://doi.org/10.1016/j.pecs.2019.100784
[13] YANG W S, KIM Y, LIU P K T, et al. A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide[J]. Chemical Engineering Science, 2002, 57(15):2945-2953.
[14] LI S, SHI Y X, YANG Y, et al. High-performance CO2 adsorbent from interlayer potassium-promoted stearate-pillared hydrotalcite precursors[J]. Energy & Fuels, 2013, 27(9):5352-5358.
[15] 史翊翔, 李爽, 陈优, 等. 一种中温疏水脱碳吸附剂及其制备方法与流程:202111416991.8[P]. 2021-11-26. SHI Y X, LI S, CHEN Y, et al. An elevated temperature hydrophobic decarbonization adsorbent and its preparation method and process:202111416991.8[P]. 2021-11-26. (in Chinese)
[16] 罗宇. 高温共电解水和二氧化碳合成甲烷反应特性与系统研究[D]. 北京:清华大学, 2018.LUO Y. Research on the reaction characteristics and system of methane production by high temperature CO2/H2O co-electrolysis[D]. Beijing:Tsinghua University, 2018. (in Chinese)
[17] LUO Y, LI W Y, SHI Y X, et al. Reversible H2/H2O electrochemical conversion mechanisms on the patterned nickel electrodes[J]. International Journal of Hydrogen Energy, 2017, 42(40):25130-25142. DOI:10.1016/j.ijhydene.2017.08.138.
[18] LUO Y, SHI Y X, CHEN Y B, et al. Pressurized tubular solid oxide H2O/CO2 coelectrolysis cell for direct power-to-methane[J]. AIChE Journal, 2020, 66(5):e16896. DOI:10.1002/aic.16896.
[1] 马朝, 程泽东, 何雅玲. 相变储热型太阳能甲醇重整反应器稳态及动态制氢特性的实验研究[J]. 清华大学学报(自然科学版), 2021, 61(12): 1371-1378.
[2] 王曦梓, 韩英, 赵微微, 张洪玉. 医用聚电解质润滑涂层[J]. 清华大学学报(自然科学版), 2020, 60(8): 630-638.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn