Advances in the development of Artificial Hearts in the Department of Energy and Power Engineering of Tsinghua University
HUANG Bo1, LI Haoyuan1, LU Bin2, ZUO Zhigang1, LUO Xianwu1, LIU Shuhong1
1. Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China; 2. Zhejiang Qingke Pumping Medical Technology Limited, Taizhou 318010, China
Abstract:The latest generation of Artificial Hearts are using centrifugal blood pumps to provide important support for patients with cardiovascular diseases. This paper describes the advances in the development of Artificial Hearts in the Department of Energy and Power Engineering of Tsinghua University. A pump design optimization method was proposed based on the maximum scalar shear stress for the hemolysis standard to raduce the calculational load and improve the optimization efficiency. A blood-cell-damage model based on the turbulent viscous dissipative stress was developed for better prediction. Both extracorporeal pumps with bearings and left ventricular assist device (LVAD) prototypes with magneto-hydraulic suspensions have been developed with studies of their hydraulics. Model predictions agree with the experimental data with an error of 3.6%. A medical fluid flow experimental system has been developed to improve research on Artificial Heart prototypes through evaluations of the physiological effects of new Artificial Heart designs.
黄博, 李浩源, 陆斌, 左志钢, 罗先武, 刘树红. 清华大学能源与动力工程系人工心脏研究进展[J]. 清华大学学报(自然科学版), 2022, 62(4): 746-757.
HUANG Bo, LI Haoyuan, LU Bin, ZUO Zhigang, LUO Xianwu, LIU Shuhong. Advances in the development of Artificial Hearts in the Department of Energy and Power Engineering of Tsinghua University. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 746-757.
[1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6):521-545. The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases burden in China:An updated summary of 2020[J]. Chinese Circulation Journal, 2021, 36(6):521-545. (in Chinese) [2] CHRISTIE J D, EDWARDS L B, KUCHERYAVAYA A Y, et al. The registry of the International Society for Heart and Lung Transplantation:Twenty-eighth adult lung and heart-lung transplant report-2011[J]. The Journal of Heart and Lung Transplantation, 2011, 30(10):1104-1122. [3] LUND L H, KHUSH K K, CHERIKH W S, et al. The registry of the International Society for Heart and Lung Transplantation:Thirty-fourth adult heart transplantation report-2017; focus theme:Allograft ischemic time[J]. The Journal of Heart and Lung Transplantation, 2017, 36(10):1037-1046. [4] AL MASRI E, AL SHAKAKI M, WELP H, et al. Long-term follow-up of patients supported with the HeartWare left ventricular assist system[J]. Artificial Organs, 2020, 44(10):1061-1066. [5] KAWAHITO K, NOSé Y. Hemolysis in different centrifugal pumps[J]. Artificial Organs, 1997, 21(4):323-326. [6] SELMI M, CHIU W C, CHIVUKULA V K, et al. Blood damage in Left Ventricular Assist Devices:Pump thrombosis or system thrombosis?[J]. The International Journal of Artificial Organs, 2019, 42(3):113-124. [7] KIRKLIN J K, NAFTEL D C, PAGANI F D, et al. Seventh INTERMACS annual report:15,000 patients and counting[J]. The Journal of Heart and Lung Transplantation, 2015, 34(12):1495-1504. [8] RAVICHANDRAN A K, PARKER J, NOVAK E, et al. Hemolysis in left ventricular assist device:A retrospective analysis of outcomes[J]. The Journal of Heart and Lung Transplantation, 2014, 33(1):44-50. [9] WHITSON B A, ECKMAN P, KAMDAR F, et al. Hemolysis, pump thrombus, and neurologic events in continuous-flow left ventricular assist device recipients[J]. The Annals of Thoracic Surgery, 2014, 97(6):2097-2103. [10] BERK Z B K, ZHANG J F, CHEN Z S, et al. Evaluation of in vitro hemolysis and platelet activation of a newly developed maglev LVAD and two clinically used LVADs with human blood[J]. Artificial Organs, 2019, 43(9):870-879. [11] SCHIMA H, MüLLER M R, PAPANTONIS D, et al. Minimization of hemolysis in centrifugal blood pumps:Influence of different geometries[J]. The International Journal of Artificial Organs, 1993, 16(7):521-529. [12] KIRKLIN J K, NAFTEL D C, KORMOS R L, et al. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device[J]. The Journal of Heart and Lung Transplantation, 2014, 33(1):12-22. [13] BLITZ A. Pump thrombosis:A riddle wrapped in a mystery inside an enigma[J]. Annals of Cardiothoracic Surgery, 2014, 3(5):450-471. [14] KANNOJIYA V, DAS A K, DAS P K. Numerical simulation of centrifugal and hemodynamically levitated LVAD for performance improvement[J]. Artificial Organs, 2020, 44(2):E1-E19. [15] OZTURK C, AKA I B, LAZOGLU I. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump[J]. The International Journal of Artificial Organs, 2018, 41(11):730-737. [16] KIM N J, DIAO C G, AHN K H, et al. Parametric study of blade tip clearance, flow rate, and impeller speed on blood damage in rotary blood pump[J]. Artificial Organs, 2009, 33(6):468-474. [17] AKA I B, OZTURK C, LAZOGLU I. Numerical investigation of volute tongue design on hemodynamic characteristics and hemolysis of the centrifugal blood pump[J]. SN Applied Sciences, 2021, 3(1):49. [18] NOBILI M, SHERIFF J, MORBIDUCCI U, et al. Platelet activation due to hemodynamic shear stresses:Damage accumulation model and comparison to in vitro measurements[J]. ASAIO Journal, 2008, 54(1):64-72. [19] WIEGMANN L, BOËS S, DE ZéLICOURT D, et al. Blood pump design variations and their influence on hydraulic performance and indicators of hemocompatibility[J]. Annals of Biomedical Engineering, 2018, 46(3):417-428. [20] ASTM Standards. Standard Practice for Assessment of Hemolysis in Continuous Flow Blood Pumps:ASTM F1841-97[S]. West Conshohocken, PA:ASTM International, 2013. [21] 孙坤, 陈琛. 人工心脏泵用磁轴承系统的起浮特性研究[J]. 机床与液压, 2017, 45(23):101-104, 141. SUN K, CHEN C. Research on start-up characteristic for maglev artificial heart pump[J]. Machine Tool & Hydraulics, 2017, 45(23):101-104, 141. (in Chinese) [22] 张岩, 胡盛寿, 周建业, 等. FW型轴流泵的体外溶血与动物实验研究[J]. 中国胸心血管外科临床杂志, 2009, 16(2):114-117. ZHANG Y, HU S S, ZHOU J Y, et al. Experimental study of hemolysis in vitro and animal testing for Fu Wai axial blood pump[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2009, 16(2):114-117. (in Chinese) [23] 李冰一, 蔺嫦燕, 姜以岭, 等. 五种叶轮血泵体外溶血试验的研究[J]. 生物医学工程学杂志, 2002, 19(3):479-482. LI B Y, LIN C Y, JIANG Y L, et al. Hemolysis test of the five kinds of impeller blood pumps in vitro[J]. Journal of Biomedical Engineering, 2002, 19(3):479-482. (in Chinese) [24] 杨晓琛, 张岩, 桂幸民. 叶轮式辅助心脏泵装置优化设计[J]. 航空动力学报, 2011, 26(6):1370-1376. YANG X C, ZHANG Y, GUI X M. Optimization and design of an impeller assist heart pump device[J]. Journal of Aerospace Power, 2011, 26(6):1370-1376. (in Chinese) [25] 徐学增, 易定华, 刘金成, 等. 新型左心辅助装置的体外溶血试验[J]. 第四军医大学学报, 2004, 25(10):928-929. XU X Z, YI D H, LIU J C, et al. In vitro hemolysis test of a novel left ventricular assist device[J]. Journal of the Fourth Military Medical University, 2004, 25(10):928-929. (in Chinese) [26] 喻梦伊, 左志钢, 刘树红. 心脏泵启动过程的数值模拟[J]. 工程热物理学报, 2015, 36(8):1701-1705. YU M Y, ZUO Z G, LIU S H. Numerical simulation of blood pump during starting period[J]. Journal of Engineering Thermophysics, 2015, 36(8):1701-1705. (in Chinese) [27] VAN OEVEREN W, TIELLIU I F, DE HART J. Comparison of modified chandler, roller pump, and ball valve circulation models for in vitro testing in high blood flow conditions:Application in thrombogenicity testing of different materials for vascular applications[J]. International Journal of Biomaterials, 2012, 2012:673163. [28] PODER T G, NONKANI W G, LEPONKOUO é T. Blood warming and hemolysis:A systematic review with meta-analysis[J]. Transfusion Medicine Reviews, 2015, 29(3):172-180. [29] KATZ J N, JENSEN B C, CHANG P P, et al. A multicenter analysis of clinical hemolysis in patients supported with durable, long-term left ventricular assist device therapy[J]. The Journal of Heart and Lung Transplantation, 2015, 34(5):701-709. [30] MOZAFARI S, REZAIENIA M A, PAUL G M, et al. The effect of geometry on the efficiency and hemolysis of centrifugal implantable blood pumps[J]. ASAIO Journal, 2017, 63(1):53-59. [31] WU J C, PADEN B E, BOROVETZ H S, et al. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device[J]. Artificial Organs, 2010, 34(5):402-411. [32] TASKIN M E, FRASER K H, ZHANG T, et al. Evaluation of Eulerian and Lagrangian models for hemolysis estimation[J]. ASAIO Journal, 2012, 58(4):363-372. [33] BLUDSZUWEIT C. Model for a general mechanical blood damage prediction[J]. Artificial Organs, 1995, 19(7):583-589. [34] HEUSER G, OPITZ R. A Couette viscometer for short time shearing of blood[J]. Biorheology, 1980, 17(1-2):17-24. [35] GE L, DASI L P, SOTIROPOULOS F, et al. Characterization of hemodynamic forces induced by mechanical heart valves:Reynolds vs. viscous stresses[J]. Annals of Biomedical Engineering, 2008, 36(2):276-297. [36] GOUBERGRITS L, OSMAN J, MEVERT R, et al. Turbulence in blood damage modeling[J]. The International Journal of Artificial Organs, 2016, 39(4):160-165. [37] JONES S A. A relationship between reynolds stresses and viscous dissipation:Implications to red cell damage[J]. Annals of Biomedical Engineering, 1995, 23(1):21-28. [38] OZTURK M, O'REAR E A, PAPAVASSILIOU D V. Hemolysis related to turbulent eddy size distributions using comparisons of experiments to computations[J]. Artificial Organs, 2015, 39(12):E227-E239. [39] JOHANSEN S T, WU J, SHYY W. Filter-based unsteady RANS computations[J]. International Journal of Heat and Fluid Flow, 2004, 25:10-21. [40] MALINAUSKAS R A, HARIHARAN P, DAY S W, et al. FDA benchmark medical device flow models for CFD validation[J]. ASAIO Journal, 2017, 63(2):150-160.