Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (4): 794-801    DOI: 10.16511/j.cnki.qhdxxb.2022.25.019
  论文 本期目录 | 过刊浏览 | 高级检索 |
燃气涡轮高效冷却技术及设计方法发展趋势
任静, 李雪英, 郭欣欣, 王善友, 许浩楠
清华大学 能源与动力工程系, 北京 100084
Development trends in high-efficiency gas turbine cooling methods
REN Jing, LI Xueying, GUO Xinxin, WANG Shanyou, XU Haonan
Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(11065 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 燃气轮机和航空发动机被誉为是工业皇冠上的明珠,其研制水平是一个国家科技水平和综合国力的重要标志。随着燃气轮机和航空发动机工作效率和性能的不断提高,涡轮入口温度逐年上升,涡轮叶片暴露在更高的来流温度下。为使金属叶片在远超其熔点的温度中仍能安全运转,亟需发展高效的冷却技术。该文概述了燃气涡轮高效冷却技术及设计方法的发展趋势,提出了按照3个维度开展燃气涡轮冷却技术研究的思路,总结了本团队在冷却单元-气冷叶栅-整机多部件交互等方面的基础研究成果,搭建了基于实验数据驱动的高效高精度冷却结构设计平台,探索了以双层壁为代表的下一代冷却技术的特性和发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任静
李雪英
郭欣欣
王善友
许浩楠
关键词 燃气涡轮气冷叶片高效冷却设计方法    
Abstract:Gas turbines and aero engines are known as the jewels of the industrial crown and their development is an important symbol of a country's technological level and national strength. Turbine inlet temperatures are rapidly increasing to improve the turbine efficiency, so the turbine blades are being exposed to higher temperatures. Efficient blade cooling methods are then needed for the blades to work safely at temperatures much higher than the material melting point. This paper reviews the development of high-efficiency cooling methods for gas turbines and presents a three-dimensional research framework for gas turbine cooling methods. This paper also reviews the research results of the present authors on the flow and heat transfer characteristics of cooling units, blade cascades and multiple cooling component interactions. This paper then presents a design method for efficient experimental data-driven cooling structure design. The characteristics and development trends of next generation cooling methods using double wall cooling are also described.
Key wordsgas turbine    air-cooled blade    efficient cooling    design method
收稿日期: 2021-09-30      出版日期: 2022-04-14
引用本文:   
任静, 李雪英, 郭欣欣, 王善友, 许浩楠. 燃气涡轮高效冷却技术及设计方法发展趋势[J]. 清华大学学报(自然科学版), 2022, 62(4): 794-801.
REN Jing, LI Xueying, GUO Xinxin, WANG Shanyou, XU Haonan. Development trends in high-efficiency gas turbine cooling methods. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 794-801.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.019  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I4/794
  
  
  
  
  
  
  
  
  
  
[1] BUNKER R S. Evolution of turbine cooling[C]//Proceedings of ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition. Charlotte, USA:ASME, 2017.
[2] OWEN J M. Air-cooled gas-turbine discs:A review of recent research[J]. International Journal of Heat and Fluid Flow, 1988, 9(4):354-365.
[3] HAN J C. Turbine blade cooling studies at Texas A&M University:1980-2004[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(2):161-187.
[4] EKKAD S V, HAN J C, DU H. Detailed film cooling measurements on a cylindrical leading edge model:Effect of free-stream turbulence and coolant density[J]. Journal of Turbomachinery, 1998, 120(4):799-807.
[5] TENG S Y, HAN J C, POINSATTE P E. Effect of film-hole shape on turbine-blade heat-transfer coefficient distribution[J]. Journal of Thermophysics and Heat Transfer, 2001, 15(3):249-256.
[6] HUANG Y Z, EKKAD S V, HAN J C. Detailed heat transfer distributions under an array of orthogonal impinging Jets[J]. Journal of Thermophysics and Heat Transfer, 1998, 12(1):73-79.
[7] LIU Z, FENG Z P. Numerical simulation on the effect of jet nozzle position on impingement cooling of gas turbine blade leading edge[J]. International Journal of Heat and Mass Transfer, 2011, 54(23-24):4949-4959.
[8] 韩昌, 迟重然, 尹洪, 等. 燃气轮机一级透平动静叶交互作用的气膜非定常特性及泛冷却效应:Part 1-静叶栅[J]. 工程热物理学报, 2013, 34(5):845-848. HAN C, CHI Z R, YIN H, et al. Unsteady characteristic of film cooling and phantom cooling on the first stage of a gas turbine:Part 1-vane cascade[J]. Journal of Engineering Thermophysics, 2013, 34(5):845-848. (in Chinese)
[9] 胥蕊娜, 李晓阳, 廖致远, 等. 航天飞行器热防护相变发汗冷却研究进展[J]. 清华大学学报(自然科学版), 2021, 61(12):1341-1352.XU R N, LI X Y, LIAO Z Y, et al. Research progress in transpiration cooling with phase Change[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(12):1341-1352. (in Chinese)
[10] 尹洪, 王文萍, 任静, 等. 燃烧室出口辐射对气膜冷却传热影响研究[J]. 工程热物理学报, 2012, 33(2):214-217. YIN H, WANG W P, REN J, et al. Research on the effect of combustor outlet radiation on the film cooling heat transfer[J]. Journal of Engineering Thermophysics, 2012, 33(2):214-217. (in Chinese)
[11] 吴宏超, 袁浩, 魏佳明, 等. 增材制造在燃气轮机研发及生产中的应用[J]. 航空动力, 2020(2):26-28. WU H C, YUAN H, WEI J M, et al. The application of addictive manufacturing technology in gas turbine research, development and manufacture[J]. Aerospace Power, 2020(2):26-28. (in Chinese)
[12] 徐文涛. 增材制造在燃气轮机中的应用[J]. 燃气轮机技术, 2017, 30(3):61-64. XU W T. Application of additive manufacturing in the manufacture of gas turbine[J]. Gas Turbine Technology, 2017, 30(3):61-64. (in Chinese)
[13] 中国航天. 西门子3D打印涡轮机叶片成功通过1 250℃、13 000 转/分的测试[EB/OL]. (2017-02-07). http://www.njszzn.com/content.php?catid=11&id=458.
[14] 杨力. 基于冲击的燃气轮机透平叶片冷却结构研究[D]. 北京:清华大学, 2015. YANG L. Research on the application of impingement cooling in gas turbineblades[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[15] TALLMAN J A, OSUSKY M, MAGINA N, et al. An assessment of machine learning techniques for predicting turbine airfoil component temperatures, using FEA simulations for training data[C]//Proceedings of ASME Turbo Expo 2019:Turbomachinery Technical Conference and Exposition. Phoenix, USA:ASME, 2019.
[16] MILANI P M, LING J L, EATON J K. Generalization of machine-learned turbulent heat flux models applied to film cooling flows[J]. Journal of Turbomachinery, 2020, 142(1):011007.
[17] MORET M, DELECOURT A, MOUSTAPHA H, et al. Automated thermal and stress preliminary analyses applied to a turbine rotor[C]//Proceedings of ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition. Seoul, South Korea:ASME, 2016.
[18] WEAR J D, TROUT A M, SMITH J M, et al. Design and preliminary results of a semitranspiration cooled (Lamilloy) liner for a high-pressure high-temperature combustor[C]//Proceedings of the 14th Joint Propulsion Conference. Las Vegas, USA:AIAA, 1978. DOI:10.2514/6.1978-997.
[19] BUNKER R S. Cooling for double-wall structures:6000908[P]. 1999-12-14.
[20] VANDERVAART P L, RHODES J F, KWON O, et al. Cooled gas turbine engine component:20150016944[P]. 2015-01-15.
[21] 李佳. 燃气轮机透平气膜冷却机理的实验与理论研究[D]. 北京:清华大学, 2011. LI J. Experimental and theoretical research on gas turbine film cooling[D]. Beijing:Tsinghua University, 2011. (in Chinese)
[22] 韩昌. 燃气轮机高温透平气膜冷却的孔型机理及叶栅特性研究[D]. 北京:清华大学, 2014. HAN C. Research on film-hole mechanism and cascade characteristics of gas turbine film cooling[D]. Beijing:Tsinghua University, 2014. (in Chinese)
[23] 李雪英. 气膜冷却各向异性湍流场中流动传热的相互作用机理研究[D]. 北京:清华大学, 2013. LI X Y. Research on the mechanism of flow and heat transfer interaction in anisotropic turbulent film cooling flows[D]. Beijing:Tsinghua University, 2013. (in Chinese)
[24] 秦晏旻. 透平叶栅环境下气膜冷却流动传热机理研究[D]. 北京:清华大学, 2015. QIN Y M. Heat transfer and aerodynamic characteristics of film cooling under turbine flow condition[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[25] 王文萍. 燃气轮机高温部件对流/导热/辐射耦合的流动传热机理研究[D]. 北京:清华大学, 2012. WANG W P. Research on flow and heat transfer mechanics at the interaction of conduction, convection and radiation on gas turbine hot component[D]. Beijing:Tsinghua University, 2012. (in Chinese)
[26] 尹洪. 先进燃气轮机燃烧室与透平交互作用的流动传热机理研究[D]. 北京:清华大学, 2014. YI H. Research on the flow and heat trasnfer of combustor-turbine interactionin advanced gas turbine[D]. Beijing:Tsinghua University, 2014. (in Chinese)
[27] 迟重然. 燃气轮机透平冷却结构作用机制与设计优化方法[D]. 北京:清华大学, 2014. CHI Z R. Mechanism and optimization methods of gas turbine cooling structures[D]. Beijing:Tsinghua University, 2014. (in Chinese)
[28] 秦晏旻, 李雪英, 任静, 等. 基于BP神经网络的多参数气膜冷却效率研究[J]. 工程热物理学报, 2011, 32(7):1127-1130. QIN Y M, LI X Y, REN J, et al. Prediction of the adiabatic film cooling effectiveness influnenced by multi parameters based on BP neural network[J]. Journal of Engineering Thermophysics, 2011, 32(7):1127-1130. (in Chinese)
[29] 谭勤学. p型多重网格间断有限元及其在燃机冷却系统中的应用[D]. 北京:清华大学, 2013. TAN Q X. p-multigrid discontinuous finite element method and application for gas turbine's cooling flow[D]. Beijing:Tsinghua University, 2013. (in Chinese)
[30] 王浪. 燃机透平叶片全覆盖气膜冷却特性与优化方法[D]. 北京:清华大学, 2020.WANG L. Characteristics and optimization of the fully coveraged film coolingvanes of gas turbine[D]. Beijing:Tsinghua University, 2020. (in Chinese)
[31] LI W H, LI X Y, YANG L, et al. Effect of Reynolds number, hole patterns, and hole inclination on cooling performance of an impinging jet array-Part I:Convective heat transfer results and optimization[J]. Journal of Turbomachinery, 2017, 139(4):041002. DOI:10.1115/1.4035045.
[32] LI W H, XU M H, REN J, et al. Experimental investigation of local and average heat transfer coefficients under an inline impinging jet array, including jets with low impingement distance and inclined angle[J]. Journal of Heat Transfer, 2017, 139(1):012201. DOI:10.1115/1.4034165.
[33] 任敏, 陆训丰, 李雪英, 等. 冲击冷却结构流动传热特性研究[J]. 工程热物理学报, 2017, 38(7):1577-1582. REN M, LU X F, LI X Y, et al. The flow and heat transfer characteristics of a impinging cooling structure[J]. Journal of Engineering Thermophysics, 2017, 38(7):1577-1582. (in Chinese)
[34] WANG L, LI X Y, REN J, et al. The interaction between upstream and downstream film cooling rows in flow field and heat transfer[J]. International Journal of Thermal Sciences, 2020, 149:106176. DOI:10.1016/j.ijthermalsci.2019.106176.
[35] LI W H, LU X F, LI X Y, et al. High resolution measurements of film cooling performance of simple and compound angle cylindrical holes with varying hole length-to-diameter ratio-Part I:Adiabatic film effectiveness[J]. International Journal of Thermal Sciences, 2018, 124:146-161. DOI:10.1016/j.ijthermalsci.2017.10.013.
[36] LI W H, LU X F, LI X Y, et al. On improving full-coverage effusion cooling efficiency by varying cooling arrangements and wall thickness in double wall cooling application[J]. Journal of Heat Transfer, 2019, 141(4):042201. DOI:10.1115/1.4042772.
[37] LU X F, LI W H, LI X Y, et al. Flow and heat transfer characteristics of micro pin-fins under jet impingement arrays[J]. International Journal of Heat and Mass Transfer, 2019, 143:118416. DOI:10.1016/j.ijheatmasstransfer.2019.07.066.
[1] 张益源, 赵嘉昊, 尤政. 面向感知微系统的系统级设计方法[J]. 清华大学学报(自然科学版), 2019, 59(3): 236-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn