Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (5): 871-880    DOI: 10.16511/j.cnki.qhdxxb.2022.21.007
  专题:能源地下结构与工程 本期目录 | 过刊浏览 | 高级检索 |
寒区路基地源热泵系统冻胀防控效果
胡田飞1,2, 王力3
1. 石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室, 石家庄 050043;
2. 石家庄铁道大学 河北省交通工程结构力学行为演变与控制重点实验室, 石家庄 050043;
3. 石家庄铁道大学 土木工程学院, 石家庄 050043
Ground source heat pump heating of embankments in cold regions to eliminate frost heave
HU Tianfei1,2, WANG Li3
1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
2. Key Laboratory of Mechanical Behavior Evolution and Control of Traffic Engineering Structures in Hebei, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
3. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
全文: PDF(14037 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为解决目前寒区路基冻胀病害难以根除和缺少冻胀灾后抢险措施的难题,设计了一种寒区路基地源热泵系统。结果表明:路基热泵宜采用直接膨胀式换热形式,实体装置可以自动化地输出40、50、60℃等不同水平供热温度,制热系数大于3.0,实现对地热能的高效收集、转化与传递。热泵运行第1、5、10 d的热作用半径分别达到0.76、1.64、2.30 m。案例模拟表明,在天然条件下路基中心冻结深度为0.89 m;而在人工供热条件下,冻结深度减小至0.2 m以内,土体升温幅度和热扩散范围随供热温度的提高而增大。实际应用中,面向冻胀快速解冻与应急抢险时,热泵沿路基纵向间距宜取2.0~4.0 m,供热容量设计为1.0~2.0 kW。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡田飞
王力
关键词 路基冻胀人工供热热泵供热温度冻结深度    
Abstract:A ground source heat pump system was designed for heating embankments to eliminate frost heave. Tests showed that the device can automatically output heating temperatures of 40, 50, or 60℃ with coefficients of performance greater than 3.0. The heating influenced a 0.76 m radius region on the 1st day, 1.64 m on the 5th day, and 2.30 m on the 10th day. A case study showed that the central freezing depth of an embankment was 0.89 m for standard conditions but was reduced to less than 0.2 m with artificial heating. The soil temperature rise and the heat diffusion both increased with increased heating temperature. Rapid thawing and emergency rescues during frost heave conditions require that the heat pumps have longitudinal spacings along the embankment of 2.0-4.0 m and heating capacities of 1.0-2.0 kW.
Key wordsembankment frost heave    artificial heating    heat pumps    heating temperature    freezing depth
收稿日期: 2021-12-13      出版日期: 2022-04-26
基金资助:国家自然科学基金青年科学基金项目(42001059);河北省自然科学基金资助项目(E2020210044);河北省高等学校科学技术研究项目(QN2020180)
作者简介: 胡田飞(1988—),男,讲师。E-mail:hutianfei@stdu.edu.cn
引用本文:   
胡田飞, 王力. 寒区路基地源热泵系统冻胀防控效果[J]. 清华大学学报(自然科学版), 2022, 62(5): 871-880.
HU Tianfei, WANG Li. Ground source heat pump heating of embankments in cold regions to eliminate frost heave. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 871-880.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.007  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I5/871
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 蔡德钩. 高速铁路季节性冻土路基冻胀时空分布规律试验[J]. 中国铁道科学, 2016, 37(3):16-21. CAI D G. Test on frost heaving spatial-temporal distribution of high speed railway subgrade in seasonal frozen soil region[J]. China Railway Science, 2016, 37(3):16-21. (in Chinese)
[2] 苗祺, 牛富俊, 林战举, 等. 季节冻土区高铁路基冻胀研究进展及展望[J]. 冰川冻土, 2019, 41(3):669-679. MIAO Q, NIU F J, LIN Z J, et al. Progress and prospects of research on frost heave of high speed railway subgrade in seasonally frozen regions[J]. Journal of Glaciology and Geocryology, 2019, 41(3):669-679. (in Chinese)
[3] 李先明, 牛富俊, 刘华, 等. 哈大高铁路基面冻胀变形特征及工程意义[J]. 冰川冻土, 2018, 40(1):55-61. LI X M, NIU F J, LIU H, et al. Characteristics and engineering significance of frost heaving in subgrade of Harbin-Dalian high-speed railway[J]. Journal of Glaciology and Geocryology, 2018, 40(1):55-61. (in Chinese)
[4] 岳祖润, 程佳. 季节性冻土地区保温护道路基温度场数值模拟[J]. 石家庄铁道大学学报(自然科学版), 2015, 28(3):25-29. YUE Z R, CHENG J. A numerical simulation of temperature field of insulating berm roadbed in seasonally frozen regions[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2015, 28(3):25-29. (in Chinese)
[5] 陶文铨. 传热学[M]. 5版. 北京:高等教育出版社, 2019. TAO W Q. Heat transfer[M]. 5th ed. Beijing:Higher Education Press, 2019. (in Chinese)
[6] 王言然, 孔纲强, 沈扬, 等. 热干扰下能量桩热力特性现场试验研究[J]. 清华大学学报(自然科学版), 2020, 60(9):733-739. WANG Y R, KONG G Q, SHEN Y, et al. Field tests of the thermal-mechanical characteristics of energy piles during thermal interactions[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(9):733-739. (in Chinese)
[7] 方修睦, 周志刚. 供热技术发展与展望[J]. 暖通空调, 2016, 46(3):14-19, 8. FANG X M, ZHOU Z G. Development and prospect of heating technology[J]. Heating Ventilating & Air Conditioning, 2016, 46(3):14-19, 8. (in Chinese)
[8] LAI J X, QIU J L, FAN H B, et al. Freeze-proof method and test verification of a cold region tunnel employing electric heat tracing[J]. Tunnelling and Underground Space Technology, 2016, 60:56-65.
[9] 张玉强, 杨勇, 夏才初, 等. 寒区隧道地源热泵型供热系统运行能效分析[J]. 现代隧道技术, 2015, 52(6):177-183. ZHANG Y Q, YANG Y, XIA C C, et al. The operating energy efficiency of a tunnel heating system using a ground-source heat pump in a cold region[J]. Modern Tunnelling Technology, 2015, 52(6):177-183. (in Chinese)
[10] 王洋浩, 蔡皖龙, 王铭, 等. 地热能供热技术研究现状及展望[J]. 制冷学报, 2021, 42(1):14-22. WANG Y H, CAI W L, WANG M. Status and outlook for research on geothermal heating technology[J]. Journal of Refrigeration, 2021, 42(1):14-22. (in Chinese)
[11] 徐慧宁, 谭忆秋, SPITLER J D. 太阳能-土壤源热能流体加热道路融雪系统融雪模型的建立[J]. 太阳能学报, 2014, 35(5):802-808. XU H N, TAN Y Q, SPITLER J D. Study on the heat and mass coupled snow melting model for solar-ground source coupled heated pavement[J]. Acta Energiae Solaris Sinica, 2014, 35(5):802-808. (in Chinese)
[12] BOURNE-WEBB P J, BODAS FREITAS T M, DA COSTA GONÇALVES R A. Thermal and mechanical aspects of the response of embedded retaining walls used as shallow geothermal heat exchangers[J]. Energy and Buildings, 2016, 125:130-141.
[13] 谭忆秋, 张驰, 陈凤晨, 等. 基于热管技术的机场道面融雪性能试验研究[J]. 中国公路学报, 2019, 32(4):137-147. TAN Y Q, ZHANG C, CHEN F C, et al. Snow melting performance experimental study of airport pavement with heat pipe technology[J]. China Journal of Highway and Transport, 2019, 32(4):137-147. (in Chinese)
[14] GAO J Q, LAI Y M, ZHANG M Y, et al. The thermal effect of heating two-phase closed thermosyphons on the high-speed railway embankment in seasonally frozen regions[J]. Applied Thermal Engineering, 2018, 141:948-957.
[15] 胡田飞. 制冷与集热技术在寒区路基工程中的应用研究[D]. 北京:北京交通大学, 2018. HU T F. Application of refrigeration and heat-collect technology to subgrade engineering in cold regions[D]. Beijing:Beijing Jiaotong University, 2018. (in Chinese)
[16] 胡田飞, 刘建坤, 岳祖润, 等. 季节性冻土区路基专用太阳能主动供热装置研究[J]. 中国铁道科学, 2021, 42(2):39-49. HU T F, LIU J K, YUE Z R, et al. Study on solar active heating device for subgrade in seasonally frozen soil region[J]. China Railway Science, 2021, 42(2):39-49. (in Chinese)
[17] 钱程. 不同气候区土壤源热泵系统的适宜性评价[D]. 北京:中国建筑科学研究院, 2008. QIAN C. The evaluation of ground-coupled heat pump system in different climatic region[D]. Beijing:China Academy of Building Research, 2008. (in Chinese)
[18] 中华人民共和国建设部. 地源热泵系统工程技术规范:GB 50366-2009[S]. 北京:中国建筑工业出版社, 2009. Ministry of Construction of the People's Republic of China. Technical code for ground-source heat pump system:GB 50366-2009[S]. Beijing:China Architecture & Building Press, 2009. (in Chinese)
[19] 顾洁, 王晓彤, 牛永红. 暖通空调设计与计算方法[M]. 3版. 北京:化学工业出版社, 2018. GU J, WANG X T, NIU Y H. HVAC Design and calculation method[M]. 3rd ed. Beijing:Chemical Industry Press, 2018. (in Chinese)
[20] 贾林瑞, 崔萍, 方亮, 等. 中深层地埋管换热器传热过程对周围岩土体的热影响[J]. 暖通空调, 2021, 51(1):101-107. JIA L R, CUI P, FANG L, et al. Thermal effect of heat transfer process of deep borehole heat exchangers on surrounding rock and soil[J]. Heating Ventilating & Air Conditioning, 2021, 51(1):101-107. (in Chinese)
[21] 胡田飞, 王天亮, 常键, 等. 基于有限体积法的冻土水热耦合程序开发及验证[J]. 岩土力学, 2020, 41(5):1781-1789. HU T F, WANG T L, CHANG J, et al. Code development and verification for coupled process of water migration and heat transfer of frozen soil based on finite volume method[J]. Rock and Soil Mechanics, 2020, 41(5):1781-1789. (in Chinese)
[1] 杨卫波, 严超逸, 张来军, 汪峰. 渗流作用下能源桩的换热性能及热-力耦合特性[J]. 清华大学学报(自然科学版), 2022, 62(5): 891-899.
[2] 郭红仙,李翔宇,程晓辉. 能源桩热响应测试的模拟及适用性评价[J]. 清华大学学报(自然科学版), 2015, 55(1): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn