Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (5): 959-964    DOI: 10.16511/j.cnki.qhdxxb.2022.21.001
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
面向深度伪造的溯源取证方法
王丽娜, 聂建思, 汪润, 翟黎明
武汉大学 空天信息安全与可信计算教育部重点实验室, 武汉 430072
Analyzing deepfake provenance and forensics
WANG Lina, NIE Jiansi, WANG Run, ZHAI Liming
Key Laboratory of Aerospace Information Security and Trusted Computing, Wuhan University, Wuhan 430072, China
全文: PDF(3111 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 近年来,生成对抗网络(GAN)的迅速发展使得合成图像越来越逼真,对个人和社会造成了极大的威胁。现有的研究致力于被动地鉴别伪造产品,但在真实应用场景下通常面临通用性不足和鲁棒性差等两大难题。因此,该文提出了一种面向深度伪造的溯源取证方法,将秘密信息隐藏到图像中以追踪伪造图像的源头。设计了一个端到端的深度神经网络,该网络由嵌入网络、GAN模拟器和恢复网络等3部分组成。其中,嵌入网络和恢复网络分别用于实现秘密信息的嵌入和提取,GAN模拟器用于模拟各种GAN的图像变换。实验中在已知GAN的篡改下恢复图像的平均归一化互相关(NCC)系数高于0.9,在未知GAN的篡改下平均NCC也能达到0.8左右,具有很好的鲁棒性和通用性。此外,该方法中嵌入的秘密信息具有较好的隐蔽性,平均峰值信噪比(PSNR)在30 dB左右。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王丽娜
聂建思
汪润
翟黎明
关键词 图像合成与篡改深度伪造溯源取证    
Abstract:In recent years, the rapid development of generative adversarial networks (GAN) has made synthesized images more and more realistic, which poses great threats to individuals and society. Existing research has focused on passively identifying deepfakes, but real-world applications are usually insufficiently general and robust. This paper presents a method for deepfake provenance and forensics. Deepfakes hide secret information in facial images to track the source of the forged image. An end-to-end deep neural network was designed to include an embedding network, a GAN simulator, and a recovery network. The embedding network embeds the secret information in the picture while the recovery network extracts the information. The GAN simulator simulates various GAN-based image transformations. The average normalized cross correlation coefficient (NCC) of the restored images after tampering with known GANs is higher than 0.9 and the average NCC reaches around 0.8 with tampering by unknown GANs, which shows good robustness and generalization. In addition, the secret embedded information is well concealed and the average peak signal to noise ratio (PSNR) is about 30 dB.
Key wordsimage synthesis and manipulation    deepfakes    provenance and forensics
收稿日期: 2021-10-18      出版日期: 2022-04-26
基金资助:国家自然科学基金面上项目(61876134);国家自然科学基金联合基金项目(U1836112);国家重点研发计划项目(2020YFB1805400)
通讯作者: 汪润,副教授,E-mail:runwang@whu.edu.cn      E-mail: runwang@whu.edu.cn
作者简介: 王丽娜(1964—),女,教授。
引用本文:   
王丽娜, 聂建思, 汪润, 翟黎明. 面向深度伪造的溯源取证方法[J]. 清华大学学报(自然科学版), 2022, 62(5): 959-964.
WANG Lina, NIE Jiansi, WANG Run, ZHAI Liming. Analyzing deepfake provenance and forensics. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 959-964.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.001  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I5/959
  
  
  
  
  
  
  
[1] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11):139-144.
[2] VERDOLIVA L. Media forensics and DeepFakes:An overview[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(5):910-932.
[3] LI Y Z, YANG X, SUN P, et al. Celeb-DF:A large-scale challenging dataset for deepfake forensics[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA:IEEE Press, 2020:3207-3216.
[4] QIAN Y Y, YIN G J, SHENG L, et al. Thinking in frequency:Face forgery detection by mining frequency-aware clues[M]//VEDALDI A, BISCHOF H, BROX T, et al. 16th European Conference Proceedings of the European Conference on Computer Vision. Cham, Switzerland:Springer, 2020:86-103.
[5] CARLINI N, FARID H. Evading deepfake-image detectors with white and black-box attacks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, WA, USA:IEEE Press, 2020:658-659.
[6] HE Z L, ZUO W M, KAN M N, et al. AttGAN:Facial attribute editing by only changing what you want[J]. IEEE Transactions on Image Processing, 2019, 28(11):5464-5478.
[7] LIU M, DING Y K, XIA M, et al. STGAN:A unified selective transfer network for arbitrary image attribute editing[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA:IEEE Press, 2019:3673-3682.
[8] CHOI Y, CHOI M, KIM M, et al. StarGAN:Unified generative adversarial networks for multi-domain image-to-image translation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA:IEEE Press, 2018:8789-8797.
[9] LIU Z W, LUO P, WANG X G, et al. Deep learning face attributes in the wild[C]//2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE Press, 2015:3730-3738.
[10] YANG X, LI Y Z, LYU S W. Exposing deep fakes using inconsistent head poses[C]//ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton, UK:IEEE Press, 2019:8261-8265.
[11] ZHANG X, KARAMAN S, CHANG S F. Detecting and simulating artifacts in GAN fake images[C]//2019 IEEE International Workshop on Information Forensics and Security. Delft, Netherlands:IEEE Press, 2019:1-6.
[12] DURALL R, KEUPER M, PFREUNDT F J, et al. Unmasking deepfakes with simple features[J/OL].[2021-10-18]. https://arxiv.org/pdf/1911.00686.pdf.
[13] 郝彦军, 朱琴, 王丽娜, 等. 数字水印演化设计[J]. 计算机工程, 2006, 32(6):157-159. HAO Y J, ZHU Q, WANG L N, et al. Digital watermarking design with evolutionary computation[J]. Computer Engineering, 2006, 32(6):157-159. (in Chinese)
[14] MUYCO S D, HERNANDEZ A A. Least significant bit hash algorithm for digital image watermarking authentication[C]//Proceedings of the 2009 5th International Conference on Computing and Artificial Intelligence. New York, NY, USA:ACM, 2019:150-154.
[15] XU H C, KANG X B, WANG Y H, et al. Exploring robust and blind watermarking approach of colour images in DWT-DCT-SVD domain for copyright protection[J]. International Journal of Electronic Security and Digital Forensics, 2018, 10(1):79-96.
[16] ZHANG C N, BENZ P, KARJAUV A, et al. UDH:Universal deep hiding for steganography, watermarking, and light field messaging[J]. Advances in Neural Information Processing Systems, 2020, 33:10223-10234.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn