Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (7): 1236-1250    DOI: 10.16511/j.cnki.qhdxxb.2022.26.010
  论文 本期目录 | 过刊浏览 | 高级检索 |
城市群绿色交通水平测度与时空演化特征实证研究
马壮林1, 高阳1, 胡大伟1, 王晋2, 马飞3, 熊英4
1. 长安大学 运输工程学院, 西安 710064;
2. 云南省交通科学研究院有限公司, 昆明 650011;
3. 长安大学 经济与管理学院, 西安 710064;
4. 西安市交通信息中心, 西安 710005
Green transportation level measurements and spatial-temporal evolution characteristics of urban agglomeration transportation systems
MA Zhuanglin1, GAO Yang1, HU Da-wei1, WANG Jin2, MA Fei3, XIONG Ying4
1. College of Transportation Engineering, Chang'an University, Xi'an 710064, China;
2. Yunnan Science Research Institute of Communication Co., Ltd., Kunming 650011, China;
3. School of Economics and Management, Chang'an University, Xi'an 710064, China;
4. Xi'an Traffic Information Center, Xi'an 710005, China
全文: PDF(6103 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 发展绿色交通是落实生态文明建设的重要途径,构建绿色交通水平测度模型、分析绿色交通水平时空演化特征是制定绿色交通发展政策的前提和基础。该文采用驱动力-压力-状态-影响-响应(driver-pressure-state-impact-response,DPSIR)模型分析城市群绿色交通各子系统与社会、经济、资源和环境之间的相互作用机理,构建城市群绿色交通水平测度指标体系,采用直觉模糊层次分析法(intuitionistic fuzzy analytic hierarchy process,IFAHP)和熵权法对指标进行赋权,并利用改进的集对分析-可变模糊集模型构建城市群绿色交通水平综合测度模型,引入贡献度和障碍度模型分别探究影响和限制城市群绿色交通水平的显著因素,最后以关中城市群为研究对象进行实例分析。结果表明:关中城市群绿色交通属于一般水平,其时间演化趋势大致呈“N”形阶段特征,空间演化分布呈“西高东低—南高北低”的分布特征,且各城市差距逐渐缩小;改进模型的测度结果较传统模型更为准确,更能反映城市群交通系统的可变模糊性;准则层中状态层面贡献度最高,对促进关中城市群绿色交通发展具有明显作用,驱动力因素贡献度最低;指标层中制约关中城市群绿色交通发展的关键因素分别为日均公交车客运量、道路路灯覆盖率、万人公交车标台数、人均GDP和人均公园绿地面积。研究结论可为促进城市群绿色交通发展、实现交通行业低碳化转型、达成碳中和目标提供理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马壮林
高阳
胡大伟
王晋
马飞
熊英
关键词 城市群绿色交通水平测度指标体系DPSIR模型改进的集对分析-可变模糊集    
Abstract:Green transportation systems are an important part of environmentally balanced societies. A green transportation level measurement model is needed to enable analyses of the spatial-temporal evolution characteristics of green transportation systems for green transportation development policies. This study used the driver-pressure-state-impact-response (DPSIR) model to analyze the interactions between various sub-systems of green transportation systems in complex urban agglomeration environments, along with the economics, resources and environmental impact. The green transportation level measurement index for urban agglomeration systems used index weights weighted by a combination of the intuitionistic fuzzy analytic hierarchy process (IFAHP) and entropy weighting. Then, a set pair analysis with variable fuzzy set model was utilized to construct a comprehensive measurement model for urban agglomeration green transportation levels. The contribution degree and obstacle degree models were used to identify the key factors affecting and restricting urban agglomeration green transportation transportation levels. Finally, the models are applied to the Guanzhong urban agglomeration(GUA). The results show that this green transportation system is a general level system and its temporal evolution trends have "N" stage characteristics. The system spatial evolution is "high in the west and low in the east, and high in the south and low in the north" with the gaps between cities gradually narrowing. The model results are more accurate than those of the traditional model and better reflect the fuzziness of urban agglomeration transportation systems. In the criterion level, the state regulations have the greatest effect on the system development with a significant role in promoting the green transportation development in this area while the driving factors have the lowest effect. In the indicator layer, the key factors restricting the green transportation development are the average daily bus passenger volume, the road streetlight coverage, the average number of buses per 10 000 people, the per capita GDP and the per capita park green space area. The research conclusions provide theoretical support for promoting the development of green transportation systems in urban agglomeration, low-carbon transformation of the transportation industry, and the goal of a carbon neutral society.
Key wordsurban agglomeration    green transportation level    measurement index system    driver-pressure-state-impact-response(DPSIR) model    improved set pair analysis with variable fuzzy sets
收稿日期: 2021-10-21      出版日期: 2022-06-16
基金资助:教育部人文社会科学研究青年基金项目(18YJCZH130);陕西省自然科学基金资助项目(2021JZ-20、2020JQ-397、2020JQ-399);西安市2020年度社会科学规划基金重点项目(JG96);长安大学中央高校基本科研业务费专项资金(300102229304)
作者简介: 马壮林(1980—),男,教授。E-mail:zhuanglinma@chd.edu.cn
引用本文:   
马壮林, 高阳, 胡大伟, 王晋, 马飞, 熊英. 城市群绿色交通水平测度与时空演化特征实证研究[J]. 清华大学学报(自然科学版), 2022, 62(7): 1236-1250.
MA Zhuanglin, GAO Yang, HU Da-wei, WANG Jin, MA Fei, XIONG Ying. Green transportation level measurements and spatial-temporal evolution characteristics of urban agglomeration transportation systems. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1236-1250.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.010  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I7/1236
  
  
  
  
  
  
  
  
  
  
  
[1] 张陶新. 绿色低碳交通[M]. 北京:中国环境出版社, 2016. ZHANG T X. Green low-carbon transport[M]. Beijing:China Environmental Science Press, 2016. (in Chinese)
[2] 杨涛, 彭佳, 俞梦骁, 等. 中国新城绿色交通规划方法与实践:以南京市南部新城绿色交通规划为例[J]. 城市交通, 2021, 19(1):58-64. YANG T, PENG J, YU M X, et al. Green transportation planning in new town of China:Take Nanjing south new town as an example[J]. Urban Transport of China, 2021, 19(1):58-64. (in Chinese)
[3] 白雁, 魏庆朝, 邱青云. 基于绿色交通的城市交通发展探讨[J]. 北京交通大学学报(社会科学版), 2006, 5(2):10-14. BAI Y, WEI Q C, QIU Q Y. Discussion of urban transportation development based on green transportation[J]. Journal of Beijing Jiaotong University (Social Sciences Edition), 2006, 5(2):10-14. (in Chinese)
[4] 张琨, 吕一河, 傅伯杰, 等. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5):949-960. ZHANG K, LV Y H, FU B J, et al. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau[J]. Acta Geographica Sinica, 2020, 75(5):949-960. (in Chinese)
[5] RUAN W Q, LI Y Q, ZHANG S N, et al. Evaluation and drive mechanism of tourism ecological security based on the DPSIR-DEA model[J]. Tourism Management, 2019, 75:609-625.
[6] 刘修岩, 梁昌一. 中国城市群一体化水平综合评价与时空演化特征分析:兼论城市群规模的影响[J]. 兰州大学学报(社会科学版), 2021, 49(2):49-61. LIU X Y, LIANG C Y. Analysis of comprehensive evaluation of the integration level of urban agglomerations in China and their temporal and spatial evolution characteristics:Concurrent discussion on the influence of the urban agglomeration scale[J]. Journal of Lanzhou University (Social Sciences), 2021, 49(2):49-61. (in Chinese)
[7] 刘传辉, 杨志鹏. 城市群数字经济指数测度及时空差异特征分析:以6大城市群为例[J]. 现代管理科学, 2021(4):92-111. LIU C H, YANG Z P. Analysis of digital economic index and spatial-temporal difference:Taking six urban agglomeration as an example[J]. Modern Management Science, 2021(4):92-111. (in Chinese)
[8] 陈万旭, 赵雪莲, 钟明星, 等. 长江中游城市群生态系统健康时空演变特征分析[J]. 生态学报, 2022, 42(1):138-149. CHEN W X, ZHAO X L, ZHONG M X, et al. Spatiotemporal evolution patterns of ecosystem health in the middle reaches of the Yangtze river urban agglomerations[J]. Acta Ecologica Sinica, 2022, 42(1):138-149. (in Chinese)
[9] 温惠英, 杨锐烁, 张子佳, 等. 中等城市绿色交通发展水平评价[J]. 城市交通, 2017, 15(3):20-26. WEN H Y, YANG R S, ZHANG Z J, et al. Evaluation of green transportation development in medium-sized cities[J]. Urban Transport of China, 2017, 15(3):20-26. (in Chinese)
[10] 马硕, 鲁晓燕. 城市绿色交通综合评价研究[J]. 黑龙江交通科技, 2017, 40(4):178-180. MA S, LU X Y. A dissertation on the study on comprehensive evaluation of urban green traffic[J]. Communications Science and Technology Heilongjiang, 2017, 40(4):178-180. (in Chinese)
[11] 周夫永. 中小城市的绿色交通体系研究[J]. 安徽建筑, 2011, 18(5):33-34. ZHOU F Y. Research on green transportation system of medium and small cities[J]. Anhui Architecture, 2011, 18(5):33-34. (in Chinese)
[12] 张子佳. 中小城市绿色交通发展水平评价方法研究[D]. 广州:华南理工大学, 2015. ZHANG Z J. Study on evaluation method of green-transportation development level of small and medium-sized city[D]. Guangzhou:South China University of Technology, 2015. (in Chinese)
[13] 蒋育红, 何小洲, 过秀成. 城市绿色交通规划评价指标体系[J]. 合肥工业大学学报(自然科学版), 2008, 31(9):1399-1402. JIANG Y H, HE X Z, GUO X C. Discussion on the evaluation index system of urban green traffic planning[J]. Journal of Hefei University of Technology (Natural Science), 2008, 31(9):1399-1402. (in Chinese)
[14] 李亮, 赵星, 杜希旺. 城市绿色交通发展综合评价研究[J]. 华东交通大学学报, 2021, 38(2):51-60. LI L, ZHAO X, DU X W. Study on comprehensive evaluation of urban green transportation development[J]. Journal of East China Jiaotong University, 2021, 38(2):51-60. (in Chinese)
[15] 王贺年, 张曼胤, 崔丽娟, 等. 基于DPSIR模型的衡水湖湿地生态环境质量评价[J]. 湿地科学, 2019, 17(2):193-198. WANG H N, ZHANG M Y, CUI L J, et al. Evaluation of ecological environment quality of Hengshui lake wetlands based on DPSIR model[J]. Wetland Science, 2019, 17(2):193-198. (in Chinese)
[16] 袁宏川, 彭勃, 李新哲. 基于DPSIR模型的长江流域中部地区水环境治理绩效评价[J]. 水电能源科学, 2021, 39(5):61-65. YUAN H C, PENG B, LI X Z. Performance evaluation of water environment governance in the middle region of the Yangtze river basin based on DPSIR model[J]. Water Resources and Power, 2021, 39(5):61-65. (in Chinese)
[17] 周雅欣, 王建伟, 高洁, 等. 基于DPSIR的低碳交通发展评价及障碍因子分析:以北京市为例[J]. 生态经济, 2020, 36(4):13-18. ZHOU Y X, WANG J W, GAO J, et al. Evaluation and obstacle factor diagnoses of low carbon transport development based on DPSIR:A case study of Beijing[J]. Ecological Economy, 2020, 36(4):13-18. (in Chinese)
[18] 金丹, 董晓. 基于DPSIR模型的城市绿色交通发展评价研究[J]. 生态经济, 2018, 34(5):79-85. JIN D, DONG X. Research on evaluation of urban green transportation development based on DPSIR model[J]. Ecological Economy, 2018, 34(5):79-85. (in Chinese)
[19] 刘云龙, 孙晓磊, 章玉, 等. 基于DPSIR模型的重庆市绿色交通发展指数研究[J]. 环境科学与管理, 2020, 45(1):157-162. LIU Y L, SUN X L, ZHANG Y, et al. Research on Chongqing green transportation development index based on DPSIR model[J]. Environmental Science and Management, 2020, 45(1):157-162. (in Chinese)
[20] 李成华, 李慧民, 云小红. 基于模糊层次分析法的建筑安全管理绩效评价研究[J]. 西安建筑科技大学学报(自然科学版), 2009, 41(2):207-212. LI C H, LI H M, YUN X H. Construction safety management performance evaluation based on fuzzy analytic hierarchy process[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2009, 41(2):207-212. (in Chinese)
[21] 张吉军. 模糊层次分析法(FAHP)[J]. 模糊系统与数学, 2000, 14(2):80-88. ZHANG J J. Fuzzy analytical hierarchy process[J]. Fuzzy Systems and Mathematics, 2000, 14(2):80-88. (in Chinese)
[22] WANG Y J, HOU L Z, LI M, et al. A novel fire risk assessment approach for large-scale commercial and high-rise buildings based on fuzzy analytic hierarchy process (FAHP) and coupling revision[J]. International Journal of Environmental Research and Public Health, 2021, 18(13):7187.
[23] ZHANG S, LIU X G, WANG X L, et al. Evaluation of coffee ecological adaptability using Fuzzy, AHP, and GIS in Yunnan Province, China[J]. Arabian Journal of Geosciences, 2021, 14(14):1366.
[24] 高云红, 王超, 哈明虎. 直觉模糊层次分析法[J]. 河北工程大学学报(自然科学版), 2001, 28(4):101-105. GAO Y H, WANG C, HA M H. Intuitionistic fuzzy analytic hierarchy process[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2001, 28(4):101-105. (in Chinese)
[25] XU Z S, LIAO H C. Intuitionistic fuzzy analytic hierarchy process[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(4):749-761.
[26] 张志芳. 基于价值函数的城市绿色交通规划评价[J]. 交通节能与环保, 2015, 11(4):52-55. ZHANG Z F. The evaluation of the urban green traffic planning based on the value function method[J]. Energy Conservation & Environmental Protection in Transportation, 2015, 11(4):52-55. (in Chinese)
[27] 陈沿伊, 曹莹, 张佳楠, 等. 基于DEMATEL-BCC模型的深圳市生态交通发展效率评价[J]. 重庆交通大学学报(自然科学版), 2020, 39(7):27-32. CHEN Y Y, CAO Y, ZHANG J N, et al. Evaluation of the development efficiency of Shenzhen ecological transportation based on DEMATEL-BCC model[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(7):27-32. (in Chinese)
[28] 王磊, 周亚楠, 张宇. 基于熵权-TOPSIS法的低碳城市发展水平评价及障碍度分析:以天津市为例[J]. 科技管理研究, 2017, 37(17):239-245. WANG L, ZHOU Y N, ZHANG Y. Analysis on evaluation of low carbon cities and obstacle degree of Tianjin based on the entropy-weight TOPSIS method[J]. Science and Technology Management Research, 2017, 37(17):239-245. (in Chinese)
[29] 刘新民, 孙璐, 孙秋霞. 城市道路交通网络脆弱性的云物元综合评价[J]. 重庆交通大学学报(自然科学版), 2019, 38(6):6-11. LIU X M, SUN L, SUN Q X. Cloud matter-element comprehensive evaluation on vulnerability of urban road traffic network[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(6):6-11. (in Chinese)
[30] HAGHSHENAS H, VAZIRI M, GHOLAMIALAM A. Evaluation of sustainable policy in urban transportation using system dynamics and world cities data:A case study in Isfahan[J]. Cities, 2015, 45:104-115.
[31] 李宗坤, 李巍, 葛巍, 等. 基于集对分析-可变模糊集耦合方法的溃坝环境影响评价[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(3):269-276. LI Z K, LI W, GE W, et al. Dam breach environmental impact evaluation based on set pair analysis-variable fuzzy set coupling model[J]. Journal of Tianjin University (Science and Technology), 2019, 52(3):269-276. (in Chinese)
[32] WANG W Q, SUN Y H, WU J. Environmental warning system based on the DPSIR model:A practical and concise method for environmental assessment[J]. Sustainability, 2018, 10(6):1728.
[33] 王海亮, 邓玲, 何奇, 等. 直觉模糊层次分析法下变压器状态的灰色模糊综合评判模型[J]. 高压电器, 2020, 56(9):216-222. WANG H L, DENG L, HE Q, et al. Grey fuzzy comprehensive evaluation model of transformer state based on intuitionistic fuzzy analytic hierarchy process[J]. High Voltage Apparatus, 2020, 56(9):216-222. (in Chinese)
[34] 刘宏. 综合评价中指标权重确定方法的研究[J]. 河北工业大学学报, 1996, 25(4):75-80. LIU H. A study on the determination of the weigthof index in synthesive assessment[J]. Journal of Hebei University of Technology, 1996, 25(4):75-80. (in Chinese)
[35] 蒋光昱, 王忠静, 索滢. 西北典型节水灌溉技术综合性能的层次分析与模糊综合评价[J]. 清华大学学报(自然科学版), 2019, 59(12):981-989. JIANG G Y, WANG Z J, SUO Y. Hierarchical analysis and fuzzy evaluation of comprehensive performance of typical water-saving irrigation techniques in Northwest China[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(12):981-989. (in Chinese)
[1] 萧星宇, 梅诗雨, 刘瑞琪, 王阔, 邓青, 黄丽达, 于峰. 新冠疫情对京津冀城市群城市发展的影响——以北京、天津、石家庄三大城市为例[J]. 清华大学学报(自然科学版), 2023, 63(6): 994-1002.
[2] 马书红, 杨磊, 陈西芳, 朱敏. 城市群生态综合交通网络组团特性分析与关键节点识别[J]. 清华大学学报(自然科学版), 2023, 63(11): 1770-1780.
[3] 陈若宇, 周江评. 基于位置服务大数据的粤港澳大湾区通勤标度特征分析[J]. 清华大学学报(自然科学版), 2022, 62(7): 1195-1202.
[4] 李自圆, 孙昊, 李林波. 基于手机信令数据的长三角全域城际出行网络分析[J]. 清华大学学报(自然科学版), 2022, 62(7): 1203-1211.
[5] 杨星琪, 黄海军. 治理“大城市病”的城市群税收政策[J]. 清华大学学报(自然科学版), 2022, 62(7): 1212-1219.
[6] 马书红, 武亚俊, 陈西芳. 城市群多模式交通网络结构韧性分析——以关中平原城市群为例[J]. 清华大学学报(自然科学版), 2022, 62(7): 1228-1235.
[7] 原雅丽, 杨小宝, 李虹慧, 四兵锋. 突发事件下城市群内旅客城际出行方式选择行为[J]. 清华大学学报(自然科学版), 2022, 62(7): 1142-1150.
[8] 景云, 李凯旋, 王旋, 郭思冶, 范骁. 高速铁路成网条件下跨城市群客流输送模式[J]. 清华大学学报(自然科学版), 2022, 62(7): 1151-1162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn