Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (9): 1375-1387    DOI: 10.16511/j.cnki.qhdxxb.2022.21.023
  堆石混凝土 本期目录 | 过刊浏览 | 高级检索 |
超长坝段堆石混凝土重力坝蓄水运行安全评价
徐小蓉1, 何涛洪2, 雷峥琦3, 张全意2, 黎聪4, 金峰4
1. 华北电力大学 水利与水电工程学院, 北京 102206;
2. 遵义市水利水电勘测设计研究院有限责任公司, 遵义 563002;
3. 中国水利水电科学研究院, 北京 100038;
4. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Safety evaluation of rock-filled concrete gravity dam with long section during the impoundment operation period
XU Xiaorong1, HE Taohong2, LEI Zhengqi3, ZHANG Quanyi2, LI Cong4, JIN Feng4
1. School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China;
2. Zunyi Survey and Design Institute of Water Conservancy and Hydropower Co. Ltd, Zunyi 563002, China;
3. China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
4. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(23689 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 堆石混凝土是一种高度采用机械化施工的筑坝技术,目前堆石混凝土重力坝因保守设计通常设置较多横缝,会导致施工仓面窄、机械转动半径小等问题。打鼓台重力坝创新采用少设横缝的设计,中间坝段是目前最长堆石混凝土重力坝段,长134 m,水库已成功蓄水运行3年多。为掌握打鼓台重力坝的蓄水运行安全状态,该文结合大坝温度、渗压、位移监测结果和有限元仿真计算分析,开展大坝在不同荷载下的工作性态演化规律研究。结果表明:蓄水运行后,坝体的温度与渗压均处于正常范围,中间超长坝段无明显开裂或渗水现象,大坝运行状态良好。堆石混凝土绝热温升低,打鼓台超长坝段的最不利位置温升也不超过10℃,因此可适当放宽重力坝坝段长度,但建议靠近坝基的大仓面避开高温季节浇筑,以控制混凝土入仓温度、减小施工期温度应力。与普通坝段工况相比,超长坝段的应力状态基本满足要求,空库或蓄水状态下最大局部应力约2.5 MPa,上游防渗层宜设置钢筋网和短缝;越冬期超长坝段的上游面水位以上部位和下游面存在高拉应力;不分横缝整体浇筑重力坝需考虑坝体端部应力大问题。在蓄水超载工况下,即使超载倍数达10.0,坝体也尚未出现上下游贯通性屈服破坏,可以看出大坝的超载安全度与稳定性较高。该文可为今后堆石混凝土重力坝的结构设计与安全评价提供科学指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐小蓉
何涛洪
雷峥琦
张全意
黎聪
金峰
关键词 堆石混凝土打鼓台水库重力坝横缝设计工作性态    
Abstract:Rock-filled concrete (RFC) is a dam construction technique that heavily relies on engineering machinery. Because of the conservative design concept, currently, many transverse joints exist in RFC gravity dams, resulting in a narrow working space and a small radius for mechanical rotation. The Dagutai RFC gravity dam innovatively adopts a design with fewer joints, and it has the longest section (134 m) among all RFC gravity dams. The reservoir has been in operation for more than 3 years after its impoundment. To determine the safety state of the Dagutai gravity dam during the impoundment operation period, this paper researched the dam's working behavior under different loads, using dam temperature, seepage pressure, and displacement monitoring results, along with the temperature stress simulation of the finite element method (FEM). The results revealed that the dam body's temperature and seepage pressure are within normal limits, and the dam's longest section has no obvious cracking or seepage, indicating that the dam performed well during storage and operation. RFC's adiabatic temperature rise is low, as evidenced by the temperature rise of the most unfavorable position in the long section being less than 10℃. The section length of the RFC gravity dam can be appropriately extended, but the large lifting surfaces near the foundation should not be constructed during hot seasons, to control the initial temperature and reduce temperature stress during construction. Compared to standard dam sections, the long section's stress state meets the requirements, and the maximum stress can reach 2.5 MPa under empty or full reservoir conditions. Reinforcing mesh and short joints should be installed in the upstream impermeable layer. Overwintering in the upstream surface above water and the downstream surface can cause high tensile stress. If a gravity RFC dam with no joints is built, the large tensile stress at both ends of the dam should be considered. Even when the overloading factor is 10.0, there was no yield failure through the upstream and downstream of the dam, indicating that the overloading safety of the dam is high and the dam stability is good. This paper's research can provide scientific guidance for the structure design of RFC gravity dams in the future.
Key wordsrock-filled concrete    Dagutai reservoir    gravity dam    transverse joint design    working behavior
收稿日期: 2022-02-04      出版日期: 2022-08-18
基金资助:何涛洪,高级工程师,E-mail:287756311@qq.com
引用本文:   
徐小蓉, 何涛洪, 雷峥琦, 张全意, 黎聪, 金峰. 超长坝段堆石混凝土重力坝蓄水运行安全评价[J]. 清华大学学报(自然科学版), 2022, 62(9): 1375-1387.
XU Xiaorong, HE Taohong, LEI Zhengqi, ZHANG Quanyi, LI Cong, JIN Feng. Safety evaluation of rock-filled concrete gravity dam with long section during the impoundment operation period. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1375-1387.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.023  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I9/1375
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 金峰, 安雪晖, 石建军, 等. 堆石混凝土及堆石混凝土大坝[J]. 水利学报, 2005, 36(11): 1347-1352. JIN F, AN X H, SHI J J, et al. Study on rock-fill concrete dam[J]. Journal of Hydraulic Engineering, 2005, 36(11): 1347-1352. (in Chinese)
[2] AN X H, WU Q, JIN F, et al. Rock-filled concrete, the new norm of SCC in hydraulic engineering in China[J]. Cement and Concrete Composites, 2014, 54: 89-99.
[3] 国家能源局. 堆石混凝土筑坝技术导则: NB/T 10077-2018[S]. 北京: 中国水利水电出版社, 2018. National Energy Administration of the People's Republic of China. Technical guide for rock-filled concrete dams: NB/T 10077-2018[S]. Beijing: China Water & Power Press, 2018. (in Chinese)
[4] 张文胜, 何涛洪, 张全意, 等. 堆石混凝土重力坝设计创新与应用实践[J]. 红水河, 2020, 39(2): 10-14. ZHANG W S, HE T H, ZHANG Q Y, et al. Design innovation and application practice of rockfill concrete gravity dam[J]. Hongshui River, 2020, 39(2): 10-14. (in Chinese)
[5] 中国大坝工程学会. 堆石混凝土坝典型结构图设计导则 (报批稿)[S]. T/CHINCOLD xxxx-2021, 北京, 2021. Chinese National Committee on Large Dams. Guide for typical structural design of rock-filled concrete dams (approval draft)[S]. T/CHINCOLD xxxx-2021, Beijing, 2021. (in Chinese)
[6] 金峰, 张国新, 娄诗建, 等. 整体浇筑堆石混凝土拱坝拱梁分载法分析研究[J]. 水利学报, 2020, 51(10): 1307-1314. JIN F, ZHANG G X, LOU S J, et al. Trial load analysis for integral casting RFC arch dams[J]. Journal of Hydraulic Engineering, 2020, 51(10): 1307-1314. (in Chinese)
[7] 金峰, 张国新, 张全意. 绿塘堆石混凝土拱坝施工期温度分析[J]. 水利学报, 2020, 51(6): 749-756. JIN F, ZHANG G X, ZHANG Q Y. Temperature analysis for Lyutang RFC arch dam in construction period[J]. Journal of Hydraulic Engineering, 2020, 51(6): 749-956. (in Chinese)
[8] 何涛洪, 张全意, 张文胜, 等. 堆石混凝土重力坝分缝设计的思考与实践[J]. 水利规划与设计, 2019(2): 105-107, 111. HE T H, ZHANG Q Y, ZHANG W S, et al. Consideration and practice of segmental design of rockfill concrete gravity dam[J]. Water Resources Planning and Design, 2019(2): 105-107, 111. (in Chinese)
[9] 朱伯芳. 大体积混凝土温度应力与温度控制[M]. 北京: 中国电力出版社, 1999. ZHU B F. Thermal stresses and temperature control of mass concrete[M]. Beijing: China Electric Power Press, 1999. (in Chinese)
[10] 张国新, 杨波, 张景华. RCC拱坝的封拱温度与温度荷载研究[J]. 水利学报, 2011, 42(7): 812-818. ZHANG G X, YANG B, ZHANG J H. Grouting temperature and thermal load of RCC arch dam[J]. Journal of Hydraulic Engineering, 2011, 42(7): 812-818. (in Chinese)
[11] 高继阳, 张国新, 杨波. 堆石混凝土坝温度应力仿真分析及温控措施研究[J]. 水利水电技术, 2016, 47(1): 31-35, 97. GAO J Y, ZHANG G X, YANG B. Study on simulative analysis of temperature stress and temperature control measures for rock-filled concrete dam[J]. Water Resources and Hydropower Engineering, 2016, 47(1): 31-35, 97. (in Chinese)
[12] 徐琨, 杨启贵, 周伟, 等. 初期集中蓄水对水布垭面板堆石坝变形特性的影响分析[J]. 中国农村水利水电, 2020(6): 179-183. XU K, YANG Q G, ZHOU W, et al. The effect of the initial concentrated impoundment on the deformation characteristics of Shuibuya CFRD[J]. China Rural Water and Hydropower, 2020(6): 179-183. (in Chinese)
[13] 金峰, 李乐, 周虎, 等. 堆石混凝土绝热温升性能初步研究[J]. 水利水电技术, 2008, 39(5): 59-63. JIN F, LI L, ZHOU H, et al. Preliminary study on temperature rise property of thermal insulation of rock-fill concrete[J]. Water Resources and Hydropower Engineering, 2008, 39(5): 59-63. (in Chinese)
[14] 赵运天, 解宏伟, 周虎. 堆石混凝土拱坝温度应力仿真及温控措施研究[J]. 水利水电技术, 2019, 50(1): 90-97. ZHAO Y T, XIE H W, ZHOU H. Study on simulation of temperature stress and temperature control measures for rock-filled concrete arch dam[J]. Water Resources and Hydropower Engineering, 2019, 50(1): 90-97. (in Chinese)
[15] ZHANG Y X, PAN J W, SUN X J, et al. Simulation of thermal stress and control measures for rock-filled concrete dam in high-altitude and cold regions[J]. Engineering Structures, 2021, 230: 111721.
[16] ZHANG X F, LIU Q, ZHANG X, et al. A study on adiabatic temperature rise test and temperature stress simulation of rock-fill concrete[J]. Mathematical Problems in Engineering, 2018, 2018: 3964926.
[1] 余舜尧, 徐小蓉, 邱流潮, 金峰. 堆石混凝土浇筑前后的非均质温度分布试验研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1388-1400.
[2] 程恒, 周秋景, 娄诗建, 张国新, 刘毅, 雷峥琦. 石坝河水库堆石混凝土重力坝施工期工作性态仿真[J]. 清华大学学报(自然科学版), 2022, 62(9): 1408-1416.
[3] 王辉, 马嘉均, 周虎, 何世钦, 金峰. 堆石混凝土单轴受压力学性能[J]. 清华大学学报(自然科学版), 2022, 62(2): 339-346.
[4] 任明倩, 安雪晖, 谭妮, 李鹏飞. 堆石骨料对混凝土层面剪切性能影响的试验研究[J]. 清华大学学报(自然科学版), 2019, 59(12): 967-974.
[5] 石杰, 李庆斌. 基于扩展有限元的重力坝尺寸效应[J]. 清华大学学报(自然科学版), 2017, 57(4): 345-350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn