Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (10): 1681-1690    DOI: 10.16511/j.cnki.qhdxxb.2021.22.016
  核能与新能源技术 本期目录 | 过刊浏览 | 高级检索 |
石墨烯强化沸腾传热研究进展及应用综述
黄潇立1, 陈泽亮1, 桂南1, 宫厚军2, 杨星团1, 屠基元1,3, 姜胜耀1
1. 清华大学 核能与新能源技术研究院, 先进反应堆工程教育部重点实验室, 先进核能技术协同创新中心, 北京 100084, 中国;
2. 中国核动力研究设计院, 成都 610000, 中国;
3. 皇家墨尔本理工大学 工学院, 墨尔本 VIC 3083, 澳大利亚
Review of graphene enhanced boiling heat transfer
HUANG Xiaoli1, CHEN Zeliang1, GUI Nan1, GONG Houjun2, YANG Xingtuan1, TU Jiyuan1,3, JIANG Shengyao1
1. Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
2. Nuclear Power Institute of China, Chengdu 610000, China;
3. School of Engineering, RMIT University, Melbourne VIC 3083, Australia
全文: PDF(5640 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 石墨烯作为一种21世纪初发现的新材料,因其在多个领域拥有优异的性能,成为目前的研究热点之一。该文结合国内外相关文献,综述了目前石墨烯材料在强化沸腾换热领域的研究进展,重点介绍了石墨烯流体和石墨烯涂层相关的研究。目前的研究主要分为2类:石墨烯作为纳米颗粒强化基液的换热以及石墨烯作为附着层强化基材的换热。关于石墨烯是否有强化的能力及其强化程度的大小,研究结果总体上是正向的。该研究为后续石墨烯强化换热的相关研究提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄潇立
陈泽亮
桂南
宫厚军
杨星团
屠基元
姜胜耀
关键词 石墨烯强化换热沸腾纳米颗粒涂层    
Abstract:Graphene is a new material discovered at the beginning of the 21st century that is now a key research topic due to its excellent properties in many fields.This article reviews the domestic and foreign literature on boiling with graphene solutions and graphene coatings to show the current research progress on graphene materials for heat transfer enhancement.The current research can be classified into two categories.One is on the effects of graphene as nano particles for enhancing the heat transfer of base fluids.The other is on the effect of a graphene layer on the heat transfer from substrates.In most cases,the heat transfer is enhanced by the graphene with these results providing a reference for research on graphene-enhanced heat transfer.
Key wordsgraphene    heat transfer enhancement    boiling    nano particle    adhesion layer
收稿日期: 2021-01-19      出版日期: 2022-09-03
基金资助:桂南,副教授,E-mail:guinan@mail.tsinghua.edu.cn
引用本文:   
黄潇立, 陈泽亮, 桂南, 宫厚军, 杨星团, 屠基元, 姜胜耀. 石墨烯强化沸腾传热研究进展及应用综述[J]. 清华大学学报(自然科学版), 2022, 62(10): 1681-1690.
HUANG Xiaoli, CHEN Zeliang, GUI Nan, GONG Houjun, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Review of graphene enhanced boiling heat transfer. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1681-1690.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.22.016  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I10/1681
  
  
  
  
  
  
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[2] NANDANAPALLI K R, MUDUSU D, LEE S. Functionalization of graphene layers and advancements in device applications[J]. Carbon, 2019, 152:954-985.
[3] PERREAULT F, DE FARIA A F, ELIMELECH M. Environmental applications of graphene-based nanomaterials[J]. Chemical Society Reviews, 2015, 44(16):5861-5896.
[4] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907.
[5] VOIRY D, YANG J, KUPFERBERG J, et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide[J]. Science, 2016, 353(6306):1413-1416.
[6] COLEMAN J N, LOTYA M, O'NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017):568-571.
[7] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
[8] SOMANI P R, SOMANI S P, UMENO M. Planer nano-graphenes from camphor by CVD[J]. Chemical Physics Letters, 2006, 430(1-3):56-59.
[9] 刘晓婷,张金灿,陈恒,等.超洁净石墨烯薄膜的制备方法[J].物理化学学报, 2022, 38(1):52-66.LIU X T, ZHANG J C, CHEN H, et al. Synthesis of superclean graphene[J]. Acta Physico-Chimica Sinica, 2022, 38(1):52-66.(in Chinese)
[10] 程婷,孙禄钊,刘志荣,等.金属衬底在石墨烯化学气相沉积生长中的作用[J].物理化学学报, 2022, 38(1):20-35. CHENG T, SUN L Z, LIU Z R, et al. Roles of transition metal substrates in graphene chemical vapor deposition growth[J]. Acta Physico-Chimica Sinica, 2022, 38(1):20-35.(in Chinese)
[11] 单俊杰,崔凌智,周帆,等.石墨烯玻璃的制备与应用[J].中国科学:化学, 2020, 50(10):1422-1438. SHAN J J, CUI Z L, ZHOU F, et al. Preparation and application of graphene glass[J]. Scientia Sinica Chimica, 2020, 50(10):1422-1438.(in Chinese)
[12] 郝文涛,张亚军,杨星团,等.小型一体化全功率自然循环压水堆NHR200-II技术特点及热力市场应用分析[J].清华大学学报(自然科学版), 2021, 61(4):322-328.HAO W T, ZHANG Y J, YANG X T, et al. Characteristics and heating market applications of NHR200-II, a small, modular integrated full-power natural circulation reactor[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(4):322-328.(in Chinese)
[13] 薄涵亮,王大中,张作义,等.一体化水堆内置式控制棒水压驱动技术研究[J].清华大学学报(自然科学版), 2021, 61(4):338-349.BO H L, WANG D Z, ZHANG Z Y, et al. In-vessel control rod hydraulic drive mechanism for integrated water reactors[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(4):338-349.(in Chinese)
[14] 李晓伟,吴莘馨,张作义,等.高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J].清华大学学报(自然科学版), 2021, 61(4):329-337.LI X W, WU X X, ZHANG Z Y, et al. Engineering test of HTR-PM helical tube once through steam generator[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(4):329-337.(in Chinese)
[15] AHN H S, KIM J M, KAVIANY M, et al. Pool boiling experiments in reduced graphene oxide colloids. Part I:Boiling characteristics[J]. International Journal of Heat and Mass Transfer, 2014, 74:501-512.
[16] AHN H S, KIM J M, KIM M H. Experimental study of the effect of a reduced graphene oxide coating on critical heat flux enhancement[J]. International Journal of Heat and Mass Transfer, 2013, 60:763-771.
[17] AHN H S, KIM J M, KIM J M, et al. Boiling characteristics on the reduced graphene oxide films[J]. Experimental Thermal and Fluid Science, 2015, 60:361-366.
[18] KIM J M, KIM T, AHN H S. Experimental study of transient boiling characteristics on three-dimensional reduced graphene oxide networks[J]. Experimental Thermal and Fluid Science, 2014, 59:51-55.
[19] KIM J M, KIM T, KIM J, et al. Effect of a graphene oxide coating layer on critical heat flux enhancement under pool boiling[J]. International Journal of Heat and Mass Transfer, 2014, 77:919-927.
[20] KIM J M, KIM J H, KIM M H, et al. Nanocapillarity in graphene oxide laminate and its effect on critical heat flux[J]. Journal of Heat Transfer, 2017, 139(8):082402.
[21] KIM J M, KIM J H, PARK S C, et al. Nucleate boiling in graphene oxide colloids:Morphological change and critical heat flux enhancement[J]. International Journal of Multiphase Flow, 2016, 85:209-222.
[22] KIM J H, KIM J M, JERNG D W, et al. Effect of aluminum oxide and reduced graphene oxide mixtures on critical heat flux enhancement[J]. International Journal of Heat and Mass Transfer, 2018, 116:858-870.
[23] KIM J M, PARK S C, KONG B, et al. Effect of porous graphene networks and micropillar arrays on boiling heat transfer performance[J]. Experimental Thermal and Fluid Science, 2018, 93:153-164.
[24] PARK S D, LEE S W, KANG S, et al. Pool boiling CHF enhancement by graphene-oxide nanofluid under nuclear coolant chemical environments[J]. Nuclear Engineering and Design, 2012, 252:184-191.
[25] PARK S D, BANG I C. Flow boiling CHF enhancement in an external reactor vessel cooling (ERVC) channel using graphene oxide nanofluid[J]. Nuclear Engineering and Design, 2013, 265:310-318.
[26] LEE M H, HEO H, BANG I C. Effect of thermal activity on critical heat flux enhancement in downward-hemispherical surface using graphene oxide coating[J]. International Journal of Heat and Mass Transfer, 2018, 127:1102-1111.
[27] GOODARZI M, TLILI I, MORIA H, et al. Boiling flow of graphene nanoplatelets nano-suspension on a small copper disk[J]. Powder Technology, 2021, 377:10-19.
[28] ZHANG L, FAN L W, YU Z T, et al. An experimental investigation of transient pool boiling of aqueous nanofluids with graphene oxide nanosheets as characterized by the quenching method[J]. International Journal of Heat and Mass Transfer, 2014, 73:410-414.
[29] FAN L W, LI J Q, LI D Y, et al. The effect of concentration on transient pool boiling heat transfer of graphene-based aqueous nanofluids[J]. International Journal of Thermal Sciences, 2015, 91:83-95.
[30] ZHANG C, ZHANG L, XU H, et al. Investigation of flow boiling performance and the resulting surface deposition of graphene oxide nanofluid in microchannels[J]. Experimental Thermal and Fluid Science, 2017, 86:1-10.
[31] AHN H S, JANG J W, SEOL M, et al. Self-assembled foam-like graphene networks formed through nucleate boiling[J]. Scientific Reports, 2013, 3(1):1396.
[32] AHN H S, KIM H, KIM J M, et al. Controllable pore size of three dimensional self-assembled foam-like graphene and its wettability[J]. Carbon, 2013, 64:27-34.
[33] AHN H S, KIM J M, PARK C, et al. A novel role of three dimensional graphene foam to prevent heater failure during boiling[J]. Scientific Reports, 2013, 3(1):1960.
[34] JO H, NOH H, KAVIANY M, et al. Tunable, self-assembled 3D reduced graphene oxide structures fabricated via boiling[J]. Carbon, 2015, 81:357-366.
[35] AHN H S, KIM J M, KIM T, et al. Enhanced heat transfer is dependent on thickness of graphene films:The heat dissipation during boiling[J]. Scientific Reports, 2014, 4(1):6276.
[36] KIM T, KIM J M, KIM J H, et al. Orientation effects on bubble dynamics and nucleate pool boiling heat transfer of graphene-modified surface[J]. International Journal of Heat and Mass Transfer, 2017, 108:1393-1405.
[37] JAIKUMAR A, GUPTA A, KANDLIKAR S G, et al. Scale effects of graphene and graphene oxide coatings on pool boiling enhancement mechanisms[J]. International Journal of Heat and Mass Transfer, 2017, 109:357-366.
[38] JAIKUMAR A, KANDLIKAR S G, GUPTA A. Pool boiling enhancement through graphene and graphene oxide coatings[J]. Heat Transfer Engineering, 2017, 38(14-15):1274-1284.
[39] RISHI A M, KANDLIKAR S G, GUPTA A. Improved wettability of graphene nanoplatelets (GNP)/copper porous coatings for dramatic improvements in pool boiling heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 132:462-472.
[40] LI N X, BETZ A R. Boiling performance of graphene oxide coated copper surfaces at high pressures[J]. Journal of Heat Transfer, 2017, 139(11):111504.
[41] UDAYA KUMAR G, SONI K, SURESH S, et al. Modified surfaces using seamless graphene/carbon nanotubes based nanostructures for enhancing pool boiling heat transfer[J]. Experimental Thermal and Fluid Science, 2018, 96:493-506.
[42] LAY K K, ONG J S, YONG K Y, et al. Nucleate pool boiling enhancement by ultrafast water permeation in graphene-nanostructure[J]. International Communications in Heat and Mass Transfer, 2019, 101:26-34.
[43] SEZER N, KHAN S A, KOÇ M. Amelioration of the pool boiling heat transfer performance via self-assembling of 3D porous graphene/carbon nanotube hybrid film over the heating surface[J]. International Journal of Heat and Mass Transfer, 2019, 145:118732.
[44] GOH J Y H, HUNG Y M, TAN M K. Extraordinarily enhanced evaporation of water droplets on graphene-nanostructured coated surfaces[J]. International Journal of Heat and Mass Transfer, 2020, 163:120396.
[45] ZHOU W B, MAO L, HU X G, et al. An optimized graphene oxide self-assembly surface for significantly enhanced boiling heat transfer[J]. Carbon, 2019, 150:168-178.
[46] 张伟,牛志愿,李亚,等.石墨烯/镍复合微结构表面的池沸腾传热特性[J].化工进展, 2018, 37(10):3759-3764. ZHANG W, NIU Z Y, LI Y, et al. Pool boiling heat transfer characteristics on graphene/nickel composite microstructures[J]. Chemical Industry and Engineering Progress, 2018, 37(10):3759-3764.(in Chinese)
[47] 毛兰,周文斌,胡学功,等.氧化石墨烯表面的饱和池沸腾强化传热实验[J].化工进展, 2019, 38(9):4164-4173. MAO L, ZHOU W B, HU X G, et al. Enhanced pool boiling heat transfer performance on graphene oxide nanocoating surface[J]. Chemical Industry and Engineering Progress, 2019, 38(9):4164-4173.(in Chinese)
[48] MAO L, ZHOU W B, HU X G, et al. Pool boiling performance and bubble dynamics on graphene oxide nanocoating surface[J]. International Journal of Thermal Sciences, 2020, 147:106154.
[49] WU C H, LEE Y A, LAI Y J, et al. Heat transfer enhancement of a multilayer graphene coating surface[J]. Experimental Thermal and Fluid Science, 2020, 118:110175.
[1] 郭伟成, 廖元太, 张洪玉. 润滑水凝胶涂层研究进展[J]. 清华大学学报(自然科学版), 2024, 64(3): 381-392.
[2] 邱豪楠, 刘威, 唐悦, 王胡军, 郑靖. 仿生超滑涂层研究进展[J]. 清华大学学报(自然科学版), 2024, 64(3): 393-408.
[3] 黄潇立, 陈泽亮, 桂南, 杨星团, 屠基元, 姜胜耀. 还原氧化石墨烯纳米流体池沸腾强化换热实验[J]. 清华大学学报(自然科学版), 2023, 63(8): 1291-1296.
[4] 严泽凡, 刘荣正, 刘兵, 邵友林, 刘马林. SiC纳米包覆颗粒烧结行为的分子动力学模拟[J]. 清华大学学报(自然科学版), 2023, 63(8): 1297-1308.
[5] 应少军, 陈志同, 李建伟, 赵越. 涂层型螺栓的弱化机理分析及加工工艺改进[J]. 清华大学学报(自然科学版), 2022, 62(9): 1539-1547.
[6] 杨旭, 程心雨, 刘荣正, 刘兵, 邵友林, 刘马林. 流化床-化学气相沉积法制备金属涂层包覆燃料颗粒[J]. 清华大学学报(自然科学版), 2021, 61(4): 361-366.
[7] 樊傲然, 马维刚, 王海东, 张兴. 双波长闪光拉曼热扩散率测量系统研发及应用[J]. 清华大学学报(自然科学版), 2021, 61(12): 1379-1388.
[8] 顾君苹, 刘琦, 吴玉新, 王庆功, 吕俊复. 过冷盐溶液流动沸腾传热预测关联式[J]. 清华大学学报(自然科学版), 2021, 61(12): 1397-1404.
[9] 裴普成, 李子钊, 任棚, 陈东方, 王希忠. PEM燃料电池用金属双极板及其涂层的研究进展[J]. 清华大学学报(自然科学版), 2021, 61(10): 1025-1038.
[10] 韩赞东, 李永杰, 陈以方. 陶瓷涂层结合质量的超声斜入射检测[J]. 清华大学学报(自然科学版), 2017, 57(5): 454-458.
[11] 王国磊, 伊强, 缪东晶, 陈恳, 王力强. 面向机器人喷涂的多变量涂层厚度分布模型[J]. 清华大学学报(自然科学版), 2017, 57(3): 324-330.
[12] 袁杨, 李祥东, 屠基元. 纳米流体沸腾模型中某些物理参数的理论探讨[J]. 清华大学学报(自然科学版), 2015, 55(7): 815-820.
[13] 潘玉龙, 王国磊, 朱丽, 陈雁, 陈恳. 管道喷涂机器人喷枪运动速度优化[J]. 清华大学学报(自然科学版), 2014, 54(2): 212-216.
[14] AbdoulayeCoulibaly, 林曦鹏, 毕景良, 柯道友. 过冷池沸腾中气泡聚并对壁面换热影响的实验研究[J]. 清华大学学报(自然科学版), 2014, 54(2): 240-246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn