Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (10): 1721-1729    DOI: 10.16511/j.cnki.qhdxxb.2022.21.013
  电机工程 本期目录 | 过刊浏览 | 高级检索 |
考虑频率安全约束的电力系统临界惯量计算
易佩1, 景志滨2, 徐飞1, 陈磊1, 齐军2, 姜希伟2, 高旭泽2
1. 清华大学 电机工程与应用电子技术系, 电力系统及大型发电设备安全控制和仿真国家重点实验室, 北京 100084;
2. 内蒙古电力(集团)有限责任公司, 呼和浩特 010010
Calculation of the critical inertia of a power system considering frequency security constraints
YI Pei1, JING Zhibin2, XU Fei1, CHEN Lei1, QI Jun2, JIANG Xiwei2, GAO Xuze2
1. State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China;
2. Inner Mongolia Electric Power (Group) Co., Ltd, Hohhot 010010, China
全文: PDF(5983 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 随着新能源大规模接入电网,电力系统惯量逐渐减小,系统频率安全受到严重威胁。该文采用"临界惯量"来量化发生临界故障后,为了维持系统稳定所需的最小惯量。首先,提出了一种解析化的频率安全计算方法,通过构造频差曲线,基于平均系统开环模型,给出了频率安全约束计算式。然后,基于频率安全约束、频率变化率(RoCoF)约束与机组调节功率约束,将系统临界惯量计算转化为优化问题的求解。最后,采用仿真系统验证了该临界惯量计算方法的有效性与准确性。仿真结果表明:机组可调节功率范围越大,临界惯量越小,因此通过增大机组备用容量可以减小系统临界惯量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易佩
景志滨
徐飞
陈磊
齐军
姜希伟
高旭泽
关键词 临界惯量构造频差曲线频率安全约束频率变化率约束调节功率约束    
Abstract:With the large-scale access of new energy to the power grid,the inertia of the power system gradually decreases,and the system frequency security is seriously threatened.In this study, "critical inertia" is used to quantify the minimum inertia required to maintain system stability after a critical failure.First,an analytical frequency safety calculation method is proposed.By constructing the frequency difference curve,the calculation formula of the frequency safety constraint is obtained based on the average system open-loop model.Then,based on the frequency safety constraint,the rate of change of frequency constraint (RoCoF),and the unit regulation power constraint,the calculation of the system-critical inertia is transformed into the solution of the optimization problem.Finally,the simulation system is used to verify the effectiveness and accuracy of the critical inertia calculation method in this study.The simulation results show that the larger the adjustable power range of the unit is,the smaller the critical inertia becomes.By increasing the standby capacity of the unit,the critical inertia of the system can be reduced.
Key wordscritical inertia    construct frequency difference curve    frequency safety constraint    the rate of change of frequency constraint    adjusting power constraints
收稿日期: 2021-12-20      出版日期: 2022-09-03
基金资助:陈磊,副研究员,E-mail:chenlei08@tsinghua.edu.cn
引用本文:   
易佩, 景志滨, 徐飞, 陈磊, 齐军, 姜希伟, 高旭泽. 考虑频率安全约束的电力系统临界惯量计算[J]. 清华大学学报(自然科学版), 2022, 62(10): 1721-1729.
YI Pei, JING Zhibin, XU Fei, CHEN Lei, QI Jun, JIANG Xiwei, GAO Xuze. Calculation of the critical inertia of a power system considering frequency security constraints. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1721-1729.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.21.013  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I10/1721
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 王博,杨德友,蔡国伟.高比例新能源接入下电力系统惯量相关问题研究综述[J].电网技术, 2020, 44(8):2998-3006. WANG B, YANG D Y, CAI G W. Review of research on power system inertia related issues in the context of high penetration of renewable power generation[J]. Power System Technology, 2020, 44(8):2998-3006.(in Chinese)
[2] PULGAR-PAINEMAL H, WANG Y J, SILVA-SARAVIA H. On inertia distribution, inter-area oscillations and location of electronically-interfaced resources[J]. IEEE Transactions on Power Systems, 2018, 33(1):995-1003.
[3] 史兴华.南澳大利亚州大停电启示[J].国家电网, 2017(1):58-61. SHI X H. Enlightenment on blackout in South Australia[J]. State Grid, 2017(1):58-61.(in Chinese)
[4] 方勇杰.英国"8·9"停电事故对频率稳定控制技术的启示[J].电力系统自动化, 2019, 43(24):1-5. FANG Y J. Reflections on frequency stability control technology based on the blackout event of 9 august 2019 in UK[J]. Automation of Electric Power Systems, 2019, 43(24):1-5.(in Chinese)
[5] 孙华东,王宝财,李文锋,等.高比例电力电子电力系统频率响应的惯量体系研究[J].中国电机工程学报, 2020, 40(16):5179-5191. SUN H D, WANG B C, LI W F, et al. Research on inertia system of frequency response for power system with high penetration electronics[J]. Proceedings of the CSEE, 2020, 40(16):5179-5191.(in Chinese)
[6] TAN B D, ZHAO J B, NETTO M, et al. Power system inertia estimation:Review of methods and the impacts of converter-interfaced generations[J]. International Journal of Electrical Power&Energy Systems, 2022, 134:107362.
[7] PEPICIELLO A, VACCARO A, VILLACCI D, et al. A method to evaluate the inertial response of frequency controlled converter-interfaced generation[C]//Proceedings of 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). Madrid, Spain:IEEE Press, 2020:1-6.
[8] PEPICIELLO A, VACCARO A. An optimization-based method for estimating critical inertia in smart grids[C]//Proceedings of 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari, Italy:IEEE Press, 2019:2237-2241.
[9] GU H J, YAN R F, SAHA T K. Minimum synchronous inertia requirement of renewable power systems[J]. IEEE Transactions on Power Systems, 2018, 33(2):1533-1543.
[10] FARROKHSERESHT N, ORÉSTICA H C, HESAMZADEH M R. Determination of acceptable inertia limit for ensuring adequacy under high levels of wind integration[C]//Proceedings of the 11th International Conference on the European Energy Market (EEM14). Krakow, Poland:IEEE, 2014:1-5.
[11] 王宝财,孙华东,李文锋,等.考虑动态频率约束的电力系统最小惯量评估[J].中国电机工程学报, 2022, 42(1):114-126. WANG B C, SUN H D, LI W F, et al. Minimum inertia estimation of power system considering dynamic frequency constraints[J]. Proceedings of the CSEE, 2022, 42(1):114-126.(in Chinese)
[12] 林晓煌,文云峰,杨伟峰.惯量安全域:概念、特点及评估方法[J].中国电机工程学报, 2021, 41(9):3065-3078. LIN X H, WEN Y F, YANG W F. Inertia security region:Concept, characteristics, and assessment method[J]. Proceedings of the CSEE, 2021, 41(9):3065-3078.(in Chinese)
[13] CHAN M L, DUNLOP R D, SCHWEPPE F. Dynamic equivalents for average system frequency behavior following major distribances[J]. IEEE Transactions on Power Apparatus and Systems, 1972, PAS-91(4):1637-1642.
[14] 张恒旭,刘玉田.电力系统动态频率响应时空分布特征量化描述[J].中国电机工程学报, 2009, 29(7):64-70. ZHANG H X, LIU Y T. Quantitative description of space-time distribution features of dynamic frequency responses[J]. Proceedings of the CSEE, 2009, 29(7):64-70.(in Chinese)
[15] EGIDO I, FERNANDEZ-BERNAL F, CENTENO P, et al. Maximum frequency deviation calculation in small isolated power systems[J]. IEEE Transactions on Power Systems, 2009, 24(4):1731-1738.
[16] LIU L, LI W D, BA Y, et al. An analytical model for frequency nadir prediction following a major disturbance[J]. IEEE Transactions on Power Systems, 2020, 35(4):2527-2536.
[17] 林恒先,侯凯元,陈磊,等.高比例风电电力系统考虑频率安全约束的机组组合[J].电网技术, 2021, 45(1):1-9. LIN H X, HOU K Y, CHEN L, et al. Unit commitment of power system with high proportion of wind power considering frequency safety constraints[J]. Power System Technology, 2021, 45(1):1-9.(in Chinese)
[18] 闵勇,陈磊,姜齐荣.电力系统稳定分析[M].北京:清华大学出版社, 2016. MIN Y, CHEN L, JIANG Q R. Power system stability[M]. Beijing:Tsinghua University Press, 2016.(in Chinese)
[19] UIJLINGS W, STREET D, LONDON S. an independent analysis on the ability of generators to ride through rate of change of frequency values up to 2Hz/s[R]. London, UK:DNV KEMA Energy&Sustainability, 2013.
[20] ADRIANTI, DY AS'G KO A. Risk assessment analysis to find optimum ROCOF protection settings[C]//Proceedings of the 12th IET International Conference on Developments in Power System Protection (DPSP 2014). Copenhagen, Denmark:IET Press, 2014:1-6.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn