Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (10): 1730-1738    DOI: 10.16511/j.cnki.qhdxxb.2021.26.030
  生物医学 本期目录 | 过刊浏览 | 高级检索 |
基于机器学习和瞳孔响应的简易高性能自闭症分类模型
刘强墨, 何旭, 周佰顺, 吴昊霖, 张弛, 秦羽, 沈晓梅, 高小榕
清华大学 生物医学工程系, 北京 100084
Simple and high performance classification model for autism based on machine learning and pupillary response
LIU Qiangmo, HE Xu, ZHOU Baishun, WU Haolin, ZHANG Chi, QIN Yu, SHEN Xiaomei, GAO Xiaorong
Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(7396 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 自闭症(autism spectrum disorder, ASD)的早期诊断对自闭症的康复至关重要。近年来,利用机器学习和眼动追踪技术对儿童进行早期自闭症诊断已成为自闭症领域的研究热点。该文在前人工作的基础上,提出了一种基于相对瞳孔响应的眼动数据预处理和瞳孔响应特征提取方法,并使用朴素Bayes算法构建了自闭症分类模型。在现有3~6岁的25名ASD儿童和50名典型发育(typical development, TD)儿童的眼动数据集Autism Detection Dataset上进行了验证,发现了自闭症儿童异常的瞳孔响应。实验结果表明:该文提出的方法在深入挖掘瞳孔特征并仅使用瞳孔特征建模的同时,实现了90.67%的平均分类准确率与92.24%的平均AUC值,优于前人同时使用瞳孔特征、注视行为特征来建模实现的82.2%的平均准确率的结果和同时使用注视行为特征、运动学特征来建模实现的78%的平均准确率的结果,兼具简易和高性能的优点。这不仅证明了该方法的有效性,还提高了基于机器学习和眼动追踪的这类自闭症早期辅助诊断系统真正应用到临床的可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘强墨
何旭
周佰顺
吴昊霖
张弛
秦羽
沈晓梅
高小榕
关键词 自闭症机器学习瞳孔响应分类模型    
Abstract:Early diagnosis of autism spectrum disorder (ASD) is very important for improving autism treatment.Recent studies have investigated early diagnosis of children with ASD using machine learning and eye tracking.This paper presents an eye tracking and pupillary response feature extraction method with a naive Bayes classification model for autism that was tested on the Autism Detection Dataset,a dataset of 25 children with ASD and 50 children with typical development aged 3-6 to identify abnormal pupillary responses in children with autism.The method has an average classification accuracy of 90.67% and an average AUC of 92.24% while using only the pupillary features for modeling,which is better than the 82.2% average accuracy achieved by a pupillary and gaze behavior feature model and 78% average accuracy achieved by a gaze behavior and kinematic feature model.This method is simple and accurate.The results show the effectiveness of this method and the feasibility of real clinical applications of this type for early autism diagnosis based on machine learning and eye tracking.
Key wordsautism    machine learning    pupillary response    dassification model
收稿日期: 2021-05-14      出版日期: 2022-09-03
基金资助:高小榕,教授,E-mail:gxr-dea@tsinghua.edu.cn
引用本文:   
刘强墨, 何旭, 周佰顺, 吴昊霖, 张弛, 秦羽, 沈晓梅, 高小榕. 基于机器学习和瞳孔响应的简易高性能自闭症分类模型[J]. 清华大学学报(自然科学版), 2022, 62(10): 1730-1738.
LIU Qiangmo, HE Xu, ZHOU Baishun, WU Haolin, ZHANG Chi, QIN Yu, SHEN Xiaomei, GAO Xiaorong. Simple and high performance classification model for autism based on machine learning and pupillary response. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1730-1738.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2021.26.030  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I10/1730
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] ROBEL L. Clinical features in autism[J]. Archives de Pédiatrie, 2009, 16(11):1507-1512.
[2] BILDT A DE, SYTEMA S, KETELAARS C, et al. Interrelationship between autism diagnostic observation schedule-generic (ADOS-G), autism diagnostic interview-revised (ADI-R), and the diagnostic and statistical manual of mental disorders (DSM-IV-TR) classification in children and adolescents with mental retardation[J]. Journal of Autism and Developmental Disorders, 2004, 34(2):129-137.
[3] 张琴. DSM-Ⅳ孤独症诊断标准与克氏行为量表对儿童孤独症的诊断评价[J].医学理论与实践, 2006, 19(5):586-587.ZHANG Q. The diagnosis and evaluation of DSM-Ⅳ autism criteria and Klinefelter Behavior Scale for children with autism[J]. The Journal of Medical Theory and Practice, 2006, 19(5):586-587.(in Chinese)
[4] 邬方彦,徐秀,刘静,等.孤独症筛查量表(CHAT-23)的应用研究[J].中国儿童保健杂志, 2010, 18(4):288-291. WU F Y, XU X, LIU J, et al. Study on the application of Autism Screening Scale (CHAT-23)[J]. Chinese Journal of Child Health Care, 2010, 18(4):288-291.(in Chinese)
[5] THABTAH F, PEEBLES D. A new machine learning model based on induction of rules for autism detection[J]. Health Informatics Journal, 2020, 26(1):264-286.
[6] MAO Y, HE Y, LIU L, et al. Disease classification based on eye movement features with decision tree and random forest[J]. Frontiers in Neuroscience, 2020, 14:798.
[7] VABALAS A, GOWEN E, POLIAKOFF E, et al. Applying machine learning to kinematic and eye movement features of a movement imitation task to predict autism diagnosis[J]. Scientific Reports, 2020, 10:8346.
[8] BAST N, BANASCHEWSKI T, DZIOBEK I, et al. Pupil dilation progression modulates aberrant social cognition in autism spectrum disorder[J]. Autism Research, 2019, 12(11):1680-1692.
[9] NYSTRÖM P, GLIGA T, JOBS E N, et al. Enhanced pupillary light reflex in infancy is associated with autism diagnosis in toddlerhood[J]. Nature Communications, 2018, 9(1):1678-1682.
[10] HALL C A, CHILCOTT R P. Eyeing up the future of the pupillary light reflex in neurodiagnostics[J]. Diagnostics, 2018, 8(1):19-38.
[11] DICRISCIO A S, HU Y, TROIANI V. Brief report:Pupillometry, visual perception, and ASD features in a task-switching paradigm[J]. Journal of Autism and Developmental Disorders, 2019, 49(12):5086-5099.
[12] DICRISCIO A S, HU Y, TROIANI V. Brief report:Visual perception, task-induced pupil response trajectories and ASD features in children[J]. Journal of Autism and Developmental Disorders, 2019, 49(7):3016-3030.
[13] DINALANKARA D M R, MILES J H, TAKAHASHI N, et al. Atypical pupillary light reflex in 2-6-year-old children with autism spectrum disorders:Pupillary light reflex in 2-6 years old[J]. Autism Research, 2017, 10(5):829-838.
[14] FAN X, MILES J H, TAKAHASHI N, et al. Sex-specific lateralization of contraction anisocoria in transient pupillary light reflex[J]. Investigative Opthalmology&Visual Science, 2009, 50(3):1137.
[15] DICRISCIO A S, TROIANI V. Pupil adaptation corresponds to quantitative measures of autism traits in children[J]. Scientific Reports, 2017, 7(1):6476-6484.
[16] DICRISCIO A S, HU Y, TROIANI V. Task-induced pupil response and visual perception in adults[J]. PLOS ONE, 2018, 13(12):e0209556.
[17] AGUILLON-HERNANDEZ N, MOFID Y, LATINUS M, et al. The pupil:A window on social automatic processing in autism spectrum disorder children[J]. Journal of Child Psychology and Psychiatry, 2020, 61(7):768-778.
[18] DICRISCIO A S, TROIANI V. Resting and functional pupil response metrics indicate features of reward sensitivity and ASD in children[J]. Journal of Autism and Developmental Disorders, 2021, 51(7):2416-2435.
[19] SARGSYAN D, JAGANNATHA S, MANYAKOV N V, et al. Feature selection with weighted importance index in an autism spectrum disorder study[J]. Statistics in Biopharmaceutical Research, 2019, 11(2):118-125.
[20] 何旭.面向自闭症早期诊断的眼动分析系统[D].北京:清华大学, 2019. HE X. Eye movement analysis system for early diagnosis of autism[D]. Beijing:Tsinghua University, 2019.(in Chinese)
[21] AMERICAN P. Diagnostic and statistical manual of mental disorders[J]. Encyclopedia of the Neurological Sciences, 1994, 25(2):4-8.
[22] SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures.[J]. Analytical Chemistry, 1964, 36(8):1627-1639.
[23] FAN X, MILES J H, TAKAHASHI N, et al. Abnormal transient pupillary light reflex in individuals with autism spectrum disorders[J]. Journal of Autism and Developmental Disorders, 2009, 39(11):1499-1508.
[24] KOHAVI R, JOHN G H. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997, 97(1-2):273-324.
[25] BATTITI R. Using mutual information for selecting features in supervised neural net learning[J]. IEEE Transactions on Neural Networks, 1994, 5(4):537-550.
[1] 吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8): 1213-1218.
[2] 代鑫, 黄弘, 汲欣愉, 王巍. 基于机器学习的城市暴雨内涝时空快速预测模型[J]. 清华大学学报(自然科学版), 2023, 63(6): 865-873.
[3] 任建强, 崔亚鹏, 倪顺江. 基于机器学习的新冠肺炎疫情趋势预测方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 1003-1011.
[4] 安健, 陈宇轩, 苏星宇, 周华, 任祝寅. 机器学习在湍流燃烧及发动机中的应用与展望[J]. 清华大学学报(自然科学版), 2023, 63(4): 462-472.
[5] 赵祺铭, 毕可鑫, 邱彤. 基于机器学习的乙烯裂解过程模型比较与集成[J]. 清华大学学报(自然科学版), 2022, 62(9): 1450-1457.
[6] 曹来成, 李运涛, 吴蓉, 郭显, 冯涛. 多密钥隐私保护决策树评估方案[J]. 清华大学学报(自然科学版), 2022, 62(5): 862-870.
[7] 王豪杰, 马子轩, 郑立言, 王元炜, 王飞, 翟季冬. 面向新一代神威超级计算机的高效内存分配器[J]. 清华大学学报(自然科学版), 2022, 62(5): 943-951.
[8] 陆思聪, 李春文. 基于场景与话题的聊天型人机会话系统[J]. 清华大学学报(自然科学版), 2022, 62(5): 952-958.
[9] 李维, 李城龙, 杨家海. As-Stream:一种针对波动数据流的算子智能并行化策略[J]. 清华大学学报(自然科学版), 2022, 62(12): 1851-1863.
[10] 马晓悦, 孟啸. 用户参与视角下多图推文的图像位置和布局效应[J]. 清华大学学报(自然科学版), 2022, 62(1): 77-87.
[11] 汤志立, 王雪, 徐千军. 基于过采样和客观赋权法的岩爆预测[J]. 清华大学学报(自然科学版), 2021, 61(6): 543-555.
[12] 王志国, 章毓晋. 监控视频异常检测:综述[J]. 清华大学学报(自然科学版), 2020, 60(6): 518-529.
[13] 宋宇波, 祁欣妤, 黄强, 胡爱群, 杨俊杰. 基于二阶段多分类的物联网设备识别算法[J]. 清华大学学报(自然科学版), 2020, 60(5): 365-370.
[14] 芦效峰, 蒋方朔, 周箫, 崔宝江, 伊胜伟, 沙晶. 基于API序列特征和统计特征组合的恶意样本检测框架[J]. 清华大学学报(自然科学版), 2018, 58(5): 500-508.
[15] 邹权臣, 张涛, 吴润浦, 马金鑫, 李美聪, 陈晨, 侯长玉. 从自动化到智能化:软件漏洞挖掘技术进展[J]. 清华大学学报(自然科学版), 2018, 58(12): 1079-1094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn