Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2022, Vol. 62 Issue (12): 1930-1937    DOI: 10.16511/j.cnki.qhdxxb.2022.26.031
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
基于可控载荷的混流泵叶轮设计及试验研究
韩亚东, 谭磊, 刘亚斌
清华大学 能源与动力工程系, 水沙科学与水利水电工程国家重点实验室, 北京 100084
Mixed-flow pump impeller design based on the controllable blade load distribution
HAN Yadong, TAN Lei, LIU Yabin
State Key Laboratory of Hydroscience and Engineering, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(9607 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 叶片泵是将机械能向流体能量转换的流体机械, 叶轮是其核心过流部件。该文基于正反问题迭代设计方法, 开展混流泵叶轮设计研究。速度矩沿轴面流线的分布规律由四次函数给定, 通过中点参数和出口斜率控制速度矩, 进而分析速度矩分布规律对叶轮性能的影响。结果表明:增大速度矩中点值, 会增加叶片进口至叶中位置的载荷, 提升叶轮做功能力。速度矩中点值主要影响叶顶附近的相对速度分布和主流区的轴向速度分布。在清华大学流体机械综合试验台开展混流泵能量特性和空化特性测量, 结果表明:混流泵高效运行区平坦宽广, 最高效率为82.17%, 空化比转速为1 289。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩亚东
谭磊
刘亚斌
关键词 混流泵叶轮设计可控载荷试验研究数值模拟    
Abstract:Vane pumps convert mechanical energy into fluid energy with the impeller being the key component. This paper designed a flow pump impeller using iterative solutions of direct and inverse problems. The velocity moment distribution along the axial streamline is controlled by a quartic function determined by the midpoint and outlet slope of velocity moment. Analyses of the influence of the velocity moment distribution on the impeller performance show that increasing the midpoint of velocity moment increases the load from the blade inlet to the middle which improves the pump work. The midpoint of velocity moment mainly affects the relative velocity distribution near the blade tip and the axial velocity in the middle of the impeller. The design was evaluated in energy and cavitation experiments. The high-efficiency operating range of the pump is flat and wide with a highest efficiency of 82.17%. The cavitation specific speed is 1 289.
Key wordsmixed-flow pump    impeller design    controllable blade load    experimental investigation    numerical simulation
收稿日期: 2022-01-22      出版日期: 2022-11-10
基金资助:谭磊, 特别研究员, E-mail: tanlei@tsinghua.edu.cn
引用本文:   
韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
HAN Yadong, TAN Lei, LIU Yabin. Mixed-flow pump impeller design based on the controllable blade load distribution. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1930-1937.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.031  或          http://jst.tsinghuajournals.com/CN/Y2022/V62/I12/1930
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] ZHAO Y, WANG G Y, HUANG B, et al. Optimization design of tandem pump based on surrogate method[J]. Journal of Harbin Engineering University, 2016, 37(3): 438-447, 454. (in Chinese) 赵宇, 王国玉, 黄彪, 等. 基于代理模型方法的串列泵优化设计[J]. 哈尔滨工程大学学报, 2016, 37(3): 438-447, 454.
[2] LUO X W, YE W X, SONG X Y, et al. Future fluid machinery supporting "double-carbon" targets[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(4): 678-692. (in Chinese) 罗先武, 叶维祥, 宋雪漪, 等. 支撑"双碳"目标的未来流体机械技术[J]. 清华大学学报(自然科学版), 2022, 62(4): 678-692.
[3] YAO Z F, WANG F J, YANG M, et al. Effects of impeller type on pressure fluctuations in double-suction centrifugal pump[J]. Journal of Mechanical Engineering, 2011, 47(12): 133-137, 143. (in Chinese) 姚志峰, 王福军, 杨敏, 等. 叶轮形式对双吸离心泵压力脉动特性影响试验研究[J]. 机械工程学报, 2011, 47(12): 133-137, 143.
[4] XUE C, ZHU B S, LIU X B, et al. Orthogonal optimization design of centrifugal pump based on blade load distribution[J]. Journal of Engineering Thermophysics, 2019, 40(5): 1065-1071. (in Chinese) 薛城, 祝宝山, 刘小兵, 等. 基于叶片载荷分布的离心泵正交优化设计[J]. 工程热物理学报, 2019, 40(5): 1065-1071.
[5] ZHANG F, YUAN S Q, WEI X Y, et al. Study on flow loss characteristics of side channel pump based on entropy production[J]. Journal of Mechanical Engineering, 2018, 54(22): 137-144. (in Chinese) 张帆, 袁寿其, 魏雪园, 等. 基于熵产的侧流道泵流动损失特性研究[J]. 机械工程学报, 2018, 54(22): 137-144.
[6] CAO S L, LIANG L, ZHU B S, et al. Design method for impeller of high specific speed mixed-flow pump[J]. Journal of Jiangsu University (Natural Science Edition), 2005, 26(3): 185-188. (in Chinese) 曹树良, 梁莉, 祝宝山, 等. 高比转速混流泵叶轮设计方法[J]. 江苏大学学报(自然科学版), 2005, 26(3): 185-188.
[7] KIM S, LEE K Y, KIM J H, et al. High performance hydraulic design techniques of mixed-flow pump impeller and diffuser[J]. Journal of Mechanical Science and Technology, 2015, 29(1): 227-240.
[8] KIM S, JEONG U B, LEE K Y, et al. Multi-objective optimization for mixed-flow pump with blade angle of impeller exit and diffuser inlet[J]. Journal of Mechanical Science and Technology, 2017, 31(11): 5099-5106.
[9] WU D Z, WANG L Q, BAO Z R. Numerical simulation of flow in open-type mixed flow pump and options of the discharge structures[J]. Journal of Mechanical Engineering, 2008, 44(8): 90-96. (in Chinese) 吴大转, 王乐勤, 包志仁. 开敞式混流泵内流的数值模拟与出水机构选择[J]. 机械工程学报, 2008, 44(8): 90-96.
[10] SHI W D, ZHANG Y, XIAO Y, et al. Research status of pump hydraulic design methods[J]. Journal of Nantong University (Natural Science Edition), 2019, 18(4): 1-7. (in Chinese) 施卫东, 张悦, 肖宇, 等. 泵水力设计方法的研究现状[J]. 南通大学学报(自然科学版), 2019, 18(4): 1-7.
[11] ZHAO W Y, WANG L, ZHAO S, et al. CFD-based impeller design method of medium-high specific speed centrifugal pump[J]. Journal of Lanzhou University of Technology, 2013, 39(2): 35-38. (in Chinese) 赵万勇, 王磊, 赵爽, 等. 基于CFD的中高比转速离心泵叶轮的设计方法[J]. 兰州理工大学学报, 2013, 39(2): 35-38.
[12] ZHANG Y X, CHEN L, ZHOU X, et al. Hydraulic design and BVF diagnosis of high efficiency centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(6): 479-483, 489. (in Chinese) 张永学, 陈龙, 周鑫, 等. 高效率离心泵水力设计及BVF诊断[J]. 排灌机械工程学报, 2013, 31(6): 479-483, 489.
[13] JIN S B, WANG Y S, DING J M, et al. Three-dimensional design and numerical experiment of mixed-flow waterjet with CFD[J]. Journal of Harbin Engineering University, 2012, 33(10): 1223-1227. (in Chinese) 靳栓宝, 王永生, 丁江明, 等. 混流式喷水推进泵三元设计及数值试验[J]. 哈尔滨工程大学学报, 2012, 33(10): 1223- 1227.
[14] ZANGENEH M. A compressible three-dimensional design method for radial and mixed flow turbomachinery blades[J]. International Journal for Numerical Methods in Fluids, 1991, 13(5): 599-624.
[15] ZANGENEH M, GOTO A, HARADA H. On the design criteria for suppression of secondary flows in centrifugal and mixed flow impellers[J]. Journal of Turbomachinery, 1998, 120(4): 723-735.
[16] GOTO A, NOHMI M, SAKURAI T, et al. Hydrodynamic design system for pumps based on 3-D CAD, CFD, and inverse design method[J]. Journal of Fluids Engineering, 2002, 124(2): 329-335.
[17] YANG W, WANG F J, WANG H. Three-dimensional inverse design and fluid flow numerical simulation for centrifugal impeller[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(6): 632-635. (in Chinese) 杨魏, 王福军, 王宏. 离心式叶轮三维反问题设计和数值计算[J]. 排灌机械工程学报, 2012, 30(6): 632-635.
[18] TAN C S, HAWTHORNE W R, MCCUNE J E, et al. Theory of blade design for large deflections: Part Ⅱ—Annular cascades[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(2): 354-365.
[19] LUO X Q, CHEN N X, LIN R C. Inverse calculation of a full three dimensional rotational flow for mixed flow runner[J]. Acta Mechanica Sinica, 1995, 27(S1): 30-36. (in Chinese) 罗兴琦, 陈乃祥, 林汝长. 混流式转轮内有旋流动的全三元反问题计算[J]. 力学学报, 1995, 27(S1): 30-36.
[20] TAN L, CAO S L, WANG Y M, et al. Direct and inverse iterative design method for centrifugal pump impellers[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226(6): 764-775.
[21] BING H, CAO S L, TAN L, et al. Parameterization of velocity moment distribution and its effects on performance of mixed-flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(13): 100-105. (in Chinese) 邴浩, 曹树良, 谭磊, 等. 速度矩分布规律的参数化描述及对混流泵性能的影响[J]. 农业工程学报, 2012, 28(13): 100-105.
[22] BING H, ZHANG Q Z, CAO S L, et al. Iteration design of direct and inverse problems and flow analysis of mixed-flow pump impellers[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(2): 179-183. (in Chinese) 邴浩, 张勤昭, 曹树良, 等. 混流泵叶轮的正反问题迭代法设计及流动分析[J]. 清华大学学报(自然科学版), 2013, 53(2): 179-183.
[23] BING H, CAO S L, TAN L, et al. Effects of diffuser vane on mixed-flow pumps performance[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(2): 125-130. (in Chinese) 邴浩, 曹树良, 谭磊, 等. 混流泵导叶对其性能的影响[J]. 排灌机械工程学报, 2012, 30(2): 125-130.
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[3] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[4] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[5] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[6] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[7] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[8] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[9] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[10] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[11] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[12] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[13] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[14] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
[15] 鲁阳平, 马灿, 谭磊, 韩亚东. 混流泵启动过程瞬态性能理论模型[J]. 清华大学学报(自然科学版), 2022, 62(12): 1938-1944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn