Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (3): 330-337    DOI: 10.16511/j.cnki.qhdxxb.2022.26.047
  论文 本期目录 | 过刊浏览 | 高级检索 |
孙志鸿1, 仇博文1, 余莉1,2, 李岩军1,2, 聂舜臣1
1. 南京航空航天大学 航空学院, 飞行器环境控制与生命保障工业和信息化部重点实验室, 南京 210016;
2. 南京航空航天大学 航空学院, 南京 210016
Micropore jet and permeability characteristics of the canopy fabric
SUN Zhihong1, QIU Bowen1, YU Li1,2, LI Yanjun1,2, NIE Shunchen1
1. Key Laboratory of Aircraft Environment Control and Life Support of Ministry of Industry and Information Technology, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(11098 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为研究伞衣微孔透气结构的射流特性,该文基于TexGen建立了2种织物的微观模型,采用计算流体动力学(computational fluid dynamics,CFD)技术开展了不同压差下的孔隙射流流场研究,探究了沿孔隙中心轴线速度和压力的变化规律。结果表明:不同孔隙结构织物均有相似的流场分布规律,孔隙射流存在速度增幅区、速度衰减区、尾流衰减区和尾流过渡区4个区域;沿轴向的速度、压力梯度主要出现在速度增幅区和速度衰减区;中心轴线的最大速度点和最小压强点均位于孔隙喉部后方约0.145tt为织物厚度)处;尾流衰减区的流动特性不受内外压差的影响,当压差大于200 Pa时,织物孔隙内和尾流场的流动特征参数变化仅由织物结构决定。结合射流区长度与织物透气量间的指数衰减关系提出了普适的射流影响域模型。该文研究方法对探究透气降落伞的精细尾流结构,提高透流伞衣流场模型的准确性具有重要意义。
E-mail Alert
关键词 降落伞伞衣织物微孔射流数值计算    
Abstract:[Objective] Parachutes are widely used in aviation, aerospace, and weapon fields as an efficient and economical aerodynamic deceleration device. The drag force of a parachute mainly comes from the pressure differential on both sides of the permeable canopy. The essence of canopy permeability is that the air flows through the fabric pores to form a jet, thus affecting the flow field around the parachute and, subsequently, the aerodynamic performance of the parachute. To study the aerodynamic performance of a parachute, the micropore jet and permeability characteristics of its canopy fabric must be thoroughly investigated.[Methods] The micromodels of fabrics with high and low porosities were established on the basis of TexGen, numerical calculation of the pore jet flow under different pressure differentials was performed using computational fluid dynamics, and the numerical permeability values were compared with the experimental values. Then, the pressure and velocity of the jet domain were analyzed. The jet domain was divided into four regions according to various velocity and pressure characteristics along the central axis of the pores. Since the quantitative analysis of the jet domain under different pressure differentials was difficult, the relative pressure differential and relative velocity without the dimension parameters were proposed. On this basis, the jet characteristic parameters were proposed along with the application of the jet theory. The parameter change rule of different fabrics under different pressure differentials was analyzed. Moreover, the factors influencing the jet parameters were studied. Finally, the Levenberg-Marquardt optimization algorithm was used to fit the influence range of the jet domain based on the single-phase exponential decay function, and the experimental results were compared with the numerical results.[Results] The numerical results of the micropore jet flow field showed that:(1) The velocity of air increased within the pore and decreased after the outflow, while the pressure changed occur inversely. The pressure gradient was concentrated in the pore. (2) The jet flow field comprised four zones:velocity increase zone, velocity decay zone, wake decay zone, and wake transition zone. The changes in the velocity and pressure gradients along the direction of air flow primarily occurred in the velocity increase and velocity decay zones. The maximum velocity value of the central axis and the minimum pressure value were located in the adjacent pore throat. The flow characteristic parameters in the wake decay zone were not affected by the influence of the pressure differential. (3) When the pressure differential exceeded 200 Pa, the flow characteristic parameters in the fabric pore and the jet domain were determined only by the fabric structure. (4) The influence range of the jet domain increased with the porosity and shares an exponential decay relationship with the air permeability.[Conclusions] In this paper, the variation law of velocity and pressure in the fabric microporous jet flow domain is studied based on the numerical results of the pore jet flow field under different pressure differentials. The jet domain calculation model suitable for the parachute fabric is established. The research method proposed in this paper is highly significant in exploring the fine-flow field structure of the permeable parachute and improving the accuracy of the flow field model of the permeable canopy.
Key wordsparachute    canopy fabric    micropore jet    numerical calculation
收稿日期: 2021-12-27      出版日期: 2023-03-04
通讯作者: 余莉,教授,      E-mail:
作者简介: 孙志鸿(1988-),男,博士研究生。
孙志鸿, 仇博文, 余莉, 李岩军, 聂舜臣. 伞衣织物微孔射流透气特性[J]. 清华大学学报(自然科学版), 2023, 63(3): 330-337.
SUN Zhihong, QIU Bowen, YU Li, LI Yanjun, NIE Shunchen. Micropore jet and permeability characteristics of the canopy fabric. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 330-337.
链接本文:  或
[1] MCQUILLING M, LOBOSKY L, SANDER S. Computational investigation of the flow around a parachute model[J]. Journal of Aircraft, 2011, 48(1):34-41.
[2] GAO Z, CHARLES R D, LI X L. Numerical modeling of flow through porous fabric surface in parachute simulation[J]. AIAA Journal, 2017, 55(2):686-690.
[3] STEIN K, BENNEY R, TEZDUYAR T, et al. Fluid-structure interactions of a cross parachute:Numerical simulation[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 191(6-7):673-687.
[4] TEZDUYAR T E, SATHE S, SCHWAAB M, et al. Fluid-structure interaction modeling of ringsail parachutes[J]. Computational Mechanics, 2008, 43(1):133-142.
[5] 杨雪, 余莉, 李允伟, 等. 环帆伞稳降阶段织物透气性影响数值模拟[J]. 空气动力学学报, 2015, 33(5):714-719. YANG X, YU L, LI Y W, et al. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. Acta Aerodynamica Sinica, 2015, 33(5):714-719. (in Chinese)
[6] CHENG H, YU L, CHEN X, et al. Numerical study of flow around parachute based on macro-scale fabric permeability as momentum source term[J]. Industria Textila, 2014, 65(5):271-276.
[7] 黄兴. 基于格子Boltzmann方法的二维自由射流数值模拟[D]. 武汉:华中科技大学, 2013. HUANG X. Numerical simulation of two dimensional free jet based on lattice Boltzmann method[D]. Wuhan:Huazhong University of Science and Technology, 2013. (in Chinese)
[8] 肖洋, 唐洪武, 华明, 等. 同向圆射流混合特性实验研究[J]. 水科学进展, 2006, 17(4):512-517. XIAO Y, TANG H W, HUA M, et al. Experimental investigation on mixing characteristics of a round jet in co-flow[J]. Advances in Water Science, 2006, 17(4):512-517. (in Chinese)
[9] STANLEY S A, SARKAR S, MELLADO J P. A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[J]. Journal of Fluid Mechanics, 2002, 450:377-407.
[10] 赵立清. 平面射流与振翅运动的数值研究[D]. 南京:南京航空航天大学, 2013. ZHAO L Q. Numerical investigations of plane jet and flapping motion[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
[11] LEW P T, MONGEAU L, LYRINTZIS A. Noise prediction of a subsonic turbulent round jet using the lattice-Boltzmann method[J]. Journal of the Acoustical Society of America, 2010, 128(3):1118-1127.
[12] ANGELOVA R, STANKOV P, SIMOVA I, et al. Three dimensional simulation of air permeability of single layer woven structures[J]. Open Engineering, 2011, 1(4):430-435.
[13] ANGELOVA R A, STANKOV P, SIMOVA I, et al. Computational modeling and experimental validation of the air permeability of woven structures on the basis of simulation of jet systems[J]. Textile Research Journal, 2013, 83(18):1887-1895.
[14] ANGELOVA R A, KYOSOV M, STANKOV P. Numerical investigation of the heat transfer through woven textiles by the jet system theory[J]. The Journal of the Textile Institute, 2019, 110(3):386-395.
[15] ZHU G C, FANG Y, ZHAO L Y, et al. Prediction of structural parameters and air permeability of cotton woven fabric[J]. Textile Research Journal, 2018, 88(14):1650-1659.
[16] 贺星, 刘永葆, 孙丰瑞. 基于改进Levenberg-Marquardt算法的燃气轮机特性拟合优化[J]. 海军工程大学学报, 2012, 24(4):35-40. HE X, LIU Y B, SUN F R. Optimal fitting of gas turbine performance based on improved Levenberg-Marquardt method[J]. Journal of Naval University of Engineering, 2012, 24(4):35-40. (in Chinese)
[1] 王广兴, 房冠辉, 李健, 刘涛, 何青松, 贾贺. 攻角效应对降落伞拉直过程影响的仿真模拟[J]. 清华大学学报(自然科学版), 2023, 63(3): 311-321.
[2] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[3] 吴卓, 张文博, 王治国, 冯佳瑞, 任雅丽. 一种大型冲压式翼伞的设计与试验[J]. 清华大学学报(自然科学版), 2023, 63(3): 348-355.
[4] 王奇, 蒋伟, 王文强, 雷江利, 张章, 赵淼. 材料弹性对降落伞充气展开力学性能影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 356-366.
[5] 隋蓉, 张文博, 贾贺, 蒋伟. 航天回收用降落伞材料强度验证方法[J]. 清华大学学报(自然科学版), 2023, 63(3): 367-375.
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持