Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (4): 521-545    DOI: 10.16511/j.cnki.qhdxxb.2023.25.025
  综述 本期目录 | 过刊浏览 | 高级检索 |
航空煤油反应动力学模型的发展现状和挑战
吴悠, 杨明, 杨斌
清华大学 能源与动力工程系, 北京 100084
Recent progress and challenges in combustion kinetic model of jet fuel
WU You, YANG Ming, YANG Bin
Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(13129 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 航空发动机数值仿真有助于加速发动机的研发进程,但需要准确可靠的航空煤油燃烧反应动力学模型。该文总结了近20年国内外航空煤油(Jet A和RP-3)及其模型燃料的研究进展,包括航空煤油的主要成分及理化性质测定、航空煤油及其模型燃料的基础燃烧实验、模型燃料构建方法及配方组成,以及模型燃料反应动力学模型的发展与验证等方面。航空煤油燃烧数值模拟的关键在于模型燃料的建立及其详细、简化燃烧反应动力学机理的发展,在高保真刻画燃烧反应动力学特性的前提下,航空煤油简化机理最终用于航空发动机燃烧室的计算流体力学(computational fluid dynamics,CFD)仿真。该文将航空煤油反应动力学模型研究分为航空煤油的实验研究、模型燃料构建及其反应动力学模型研究3个部分,并着重讨论了此部分的发展现状与挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴悠
杨明
杨斌
关键词 燃烧反应动力学航空煤油模型燃料RP-3    
Abstract:[Significance] The numerical simulation of an aero-engine conduces to accelerate the engine research and development processes, which requires an accurate and reliable combustion kinetic model of jet fuel. This paper reviews the research progress of jet fuel (Jet A and RP-3) and their surrogate fuels in recent years. It includes the main composition of jet fuel, physical and chemical property measurement and combustion experiments of jet fuel and surrogate fuels, construction methods for surrogate fuel, surrogate fuel's composition and combustion kinetic models, and verification of the combustion experiment and the kinetic model of surrogate fuel by the combustion characteristics of jet fuel. The key to the numerical simulation of jet fuel combustion is to develop the surrogate fuel, as well as to reasonably construct and simplify its combustion kinetic mechanism, so that it can not only describe the combustion kinetic characteristics with high fidelity, but also be coupled with computational fluid dynamics (CFD) simulation. According to different research purposes, developing an appropriate reduced kinetic model of jet fuel and applying it to the numerical simulation of an aero-engine help to understand the combustion processes in engines. Furthermore, it also provides technical support for engine design optimization and performance improvement. [Progress] The development of the combustion kinetic model of jet fuel is mainly divided into three parts: the experimental study of jet fuel, the construction of surrogate fuels, and the combustion kinetic model of the surrogate fuel. This paper focuses on the progress and challenges of the above three aspects. In experimental study, researchers mainly focus on the combustion characteristics of ignition, flame speed, and oxidation products. Jet A and its surrogate fuels have well-established physical and chemical properties, as well as combustion experimental data that have been extensively validated. Although study of RP-3 starts relatively late, many high-temperature ignition and laminar flame experiments have been conducted, with relatively fewer low-temperature ignition and oxidation experiments. There is an urgent need to conduct accurate fundamental combustion experiments covering a wider range of temperatures, pressures, and equivalence ratios that encompass the operating conditions of aero-engines and establish the fundamental combustion databases of jet fuel and its related component fuels. In terms of surrogate fuel, its construction methods can be roughly divided into four categories, including matching hydrocarbon composition, key physical and chemical properties, characteristic functional groups, and combustion experimental results. Currently, most surrogate fuels match a few characteristics of jet fuels, and the choosing of matching parameters rely heavily on the researcher's experience and research goals. Therefore, it is still necessary to discuss how to develop a systematic construction method for surrogate fuels: One that does not depend on the researcher's experience and only requires selecting the matching parameters of the surrogate fuel based on the research objective. The systematic construction of surrogate fuels requires a fundamental combustion experimental database for jet fuel, while detailed combustion kinetics mechanisms of single- and multiple-components fuels in jet fuel are also necessary. In the study of combustion kinetics models, the surrogate fuels, kinetic mechanisms and combustion experimental data for RP-3, influenced by the experimental research, are mostly one-to-one correspondence. This leads to a lack of universality in surrogate fuels and their detailed mechanisms. Due to the lack of low-temperature ignition and oxidation data, research on the combustion kinetics models of jet fuel primarily focuses on high-temperature ignition and laminar flame speed, with relatively less attention given to the low-temperature mechanisms. Furthermore, in practical applications, detailed kinetics models need to be simplified for use in CFD, so appropriate reduced mechanisms for jet fuel are necessary. [Conclusions and Prospects] The development of the jet fuel combustion kinetic model should move towards database-based and modular construction. Therefore, it is urgent to establish the fundamental combustion database of jet fuel and its related component fuels, as well as continuously develop systematic methods for constructing surrogate fuels, simplifying and optimizing kinetic models. Thus, suitable systematic construction of jet fuel combustion kinetics models can be achieved according to different research objectives.
Key wordscombustion reaction kinetics    jet fuel    surrogate fuel    RP-3
收稿日期: 2023-02-15      出版日期: 2023-04-22
基金资助:国家自然科学基金(52076116)
通讯作者: 杨斌,教授,E-mail:byang@tsinghua.edu.cn     E-mail: byang@tsinghua.edu.cn
作者简介: 吴悠(1996-),女,博士研究生。
引用本文:   
吴悠, 杨明, 杨斌. 航空煤油反应动力学模型的发展现状和挑战[J]. 清华大学学报(自然科学版), 2023, 63(4): 521-545.
WU You, YANG Ming, YANG Bin. Recent progress and challenges in combustion kinetic model of jet fuel. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 521-545.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.25.025  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I4/521
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] BP. BP statistical review of world energy 2022[R]. London, UK:BP, 2022.
[2] ZHANG C, HUI X, LIN Y Z, et al. Recent development in studies of alternative jet fuel combustion:Progress, challenges, and opportunities[J]. Renewable and Sustainable Energy Reviews, 2016, 54:120-138.
[3] CURRAN H J. Developing detailed chemical kinetic mechanisms for fuel combustion[J]. Proceedings of the Combustion Institute, 2019, 37(1):57-81.
[4] DRYER F L. Chemical kinetic and combustion characteristics of transportation fuels[J]. Proceedings of the Combustion Institute, 2015, 35(1):117-144.
[5] COLKET M, HEYNE J, RUMIZEN M, et al. Overview of the national jet fuels combustion program[J]. AIAA Journal, 2017, 55(4):1087-1104.
[6] DAGAUT P, CATHONNET M. The ignition, oxidation, and combustion of kerosene:A review of experimental and kinetic modeling[J]. Progress in Energy and Combustion Science, 2006, 32(1):48-92.
[7] WU Z Y, MAO Y B, RAZA M, et al. Surrogate fuels for RP-3 kerosene formulated by emulating molecular structures, functional groups, physical and chemical properties[J]. Combustion and Flame, 2019, 208:388-401.
[8] HOLLEY A T, DONG Y, ANDAC M G, et al. Ignition and extinction of non-premixed flames of single-component liquid hydrocarbons, jet fuels, and their surrogates[J]. Proceedings of the Combustion Institute, 2007, 31(1):1205-1213.
[9] WIDEGREN J A, BRUNO T J. Thermal decomposition kinetics of the aviation turbine fuel Jet A[J]. Industrial&Engineering Chemistry Research, 2008, 47(13):4342-4348.
[10] VALCO D J, MIN K, OLDANI A, et al. Low temperature autoignition of conventional jet fuels and surrogate jet fuels with targeted properties in a rapid compression machine[J]. Proceedings of the Combustion Institute, 2017, 36(3):3687-3694.
[11] KIM D, VIOLI A. On the importance of species selection for the formulation of fuel surrogates[J]. Proceedings of the Combustion Institute, 2021, 38(4):5615-5624.
[12] 范学军,俞刚.大庆RP-3航空煤油热物性分析[J].推进技术, 2006, 27(2):187-192. FAN X J, YU G. Analysis of thermophysical properties of Daqing RP-3 aviation kerosene[J]. Journal of Propulsion Technology, 2006, 27(2):187-192.(in Chinese)
[13] YAN Y W, LIU Y C, FANG W, et al. A simplified chemical reaction mechanism for two-component RP-3 kerosene surrogate fuel and its verification[J]. Fuel, 2018, 227:127-134.
[14] LIU G Z, QU H J, SHEN H M, et al. Theoretical design and preparation of high thermal-stable jet fuel[J]. Science in China Series B:Chemistry, 2008, 51(2):138-144.
[15] 郑东,于维铭,钟北京. RP-3航空煤油替代燃料及其化学反应动力学模型[J].物理化学学报, 2015, 31(4):636-642. ZHENG D, YU W M, ZHONG B J. RP-3 aviation kerosene surrogate fuel and the chemical reaction kinetic model[J]. Acta Physico-Chimica Sinica, 2015, 31(4):636-642.(in Chinese)
[16] 徐佳琪,郭俊江,刘爱科,等. RP-3替代燃料自点火燃烧机理构建及动力学模拟[J].物理化学学报, 2015, 31(4):643-652. XU J Q, GUO J J, LIU A K, et al. Construction of autoignition mechanisms for the combustion of RP-3 surrogate fuel and kinetics simulation[J]. Acta Physico-Chimica Sinica, 2015, 31(4):643-652.(in Chinese)
[17] 刘岳曦. C9航空模型燃料的反应动力学研究[D].北京:中国科学院大学, 2019. LIU Y X. The reaction kinetic studies of C9 surrogate fuels of kerosene[D]. Beijing:University of Chinese Academy of Sciences, 2019.(in Chinese)
[18] MAO Y B, YU L, WU Z Y, et al. Experimental and kinetic modeling study of ignition characteristics of RP-3 kerosene over low-to-high temperature ranges in a heated rapid compression machine and a heated shock tube[J]. Combustion and Flame, 2019, 203:157-169.
[19] ABDALLA A O G, YING Y Y, JIANG B, et al. Comparative study on characteristics of soot from n-decane and RP-3 kerosene normal/inverse diffusion flames[J]. Journal of the Energy Institute, 2020, 93(1):62-75.
[20] DU L J, LIU Y X, TIAN Z Y. An experimental and modeling study of oxidation of real RP-3 aviation kerosene[J]. Fuel, 2021, 305:121476.
[21] HUANG L Y, HUANG S, MAO Y B, et al. An experimental study on the laminar burning velocities of RP-3 kerosene and its surrogate fuel at elevated pressures and temperatures[J]. Fuel, 2023, 331:125844.
[22] KANG D, KALASKAR V, KIM D, et al. Experimental study of autoignition characteristics of Jet-A surrogates and their validation in a motored engine and a constant-volume combustion chamber[J]. Fuel, 2016, 184:565-580.
[23] 范启明,米镇涛,于燕,等.高超音速推进用吸热型烃类燃料的热稳定性研究Ⅰ.热氧化与热裂解沉积[J].燃料化学学报, 2002, 30(1):78-82. FAN Q M, MI Z T, YU Y, et al. Study on thermal stability of endothermic hydrocarbon fuels for hypersonic propulsion Ⅰ. Thermal oxidation&pyrolytic deposit[J]. Journal of Fuel Chemistry and Technology, 2002, 30(1):78-82.(in Chinese)
[24] 朱玉红,余彩香,李子木,等.航空燃料超临界热裂解过程中焦炭的形成[J].石油化工, 2006, 35(12):1151-1155. ZHU Y H, YU C X, LI Z M, et al. Formation of coke in thermal cracking of jet fuel under supercritical conditions[J]. Petrochemical Technology, 2006, 35(12):1151-1155.(in Chinese)
[25] LIU J, HU E J, ZENG W, et al. A new surrogate fuel for emulating the physical and chemical properties of RP-3 kerosene[J]. Fuel, 2020, 259:116210.
[26] NARAYANASWAMY K, PITSCH H, PEPIOT P. A component library framework for deriving kinetic mechanisms for multi-component fuel surrogates:Application for jet fuel surrogates[J]. Combustion and Flame, 2016, 165:288-309.
[27] LIU Y, WANG J D, GU W, et al. An experiment study on the laminar burning velocity and markstein length of chlorella oil/RP-3 kerosene blends[J]. ACS Omega, 2020, 5(37):23510-23519.
[28] PITZ W J, MUELLER C J. Recent progress in the development of diesel surrogate fuels[J]. Progress in Energy and Combustion Science, 2011, 37(3):330-350.
[29] SARATHY S M, FAROOQ A, KALGHATGI G T. Recent progress in gasoline surrogate fuels[J]. Progress in Energy and Combustion Science, 2018, 65:67-108.
[30] EDWARDS T, MAURICE L Q. Surrogate mixtures to represent complex aviation and rocket fuels[J]. Journal of Propulsion and Power, 2001, 17(2):461-466.
[31] FERRELL J T, CERNANSKY N P, DRYER F L, et al. Development of an experimental database and kinetic models for surrogate diesel fuels[C]//Proceedings of the 2007 SAE World Congress. Detroit, USA:SAE, 2007.
[32] VIOLI A, YAN S, EDDINGS E G, et al. Experimental formulation and kinetic model for JP-8 surrogate mixtures[J]. Combustion Science and Technology, 2002, 174(11-12):399-417.
[33] GUERÉT C, CATHONNET M, BOETTNER J C, et al. Experimental study and modeling of kerosene oxidation in a jet-stirred flow reactor[J]. Symposium (International) on Combustion, 1991, 23(1):211-216.
[34] DAGAUT P. On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel[J]. Physical Chemistry Chemical Physics, 2002, 4(11):2079-2094.
[35] DOOLEY S, WON S H, CHAOS M, et al. A jet fuel surrogate formulated by real fuel properties[J]. Combustion and Flame, 2010, 157(12):2333-2339.
[36] DOOLEY S, WON S H, HEYNE J, et al. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena[J]. Combustion and Flame, 2012, 159(4):1444-1466.
[37] KIM D, MARTZ J, VIOLI A. A surrogate for emulating the physical and chemical properties of conventional jet fuel[J]. Combustion and Flame, 2014, 161(6):1489-1498.
[38] YU J, JU Y G, GOU X L. Surrogate fuel formulation for oxygenated and hydrocarbon fuels by using the molecular structures and functional groups[J]. Fuel, 2016, 166:211-218.
[39] 禹进.用于燃烧反应流模拟的模型燃料构建方法研究[D].重庆:重庆大学, 2017. YU J. Studies on the surrogate fuel methods for the simulation of reacting flows in combustion[D]. Chongqing:Chongqing University, 2017.(in Chinese)
[40] JAMEEL A G A, NASER N, ISSAYEV G, et al. A minimalist functional group (MFG) approach for surrogate fuel formulation[J]. Combustion and Flame, 2018, 192:250-271.
[41] JAMEEL A G A, NASER N, EMWAS A H, et al. Surrogate formulation for diesel and jet fuels using the minimalist functional group (MFG) approach[J]. Proceedings of the Combustion Institute, 2019, 37(4):4663-4671.
[42] LI A, ZHANG Z Y N, CHENG X G, et al. Development and validation of surrogates for RP-3 jet fuel based on chemical deconstruction methodology[J]. Fuel, 2020, 267:116975.
[43] LI A, ZHU L, MAO Y B, et al. Surrogate formulation methodology for biodiesel based on chemical deconstruction in consideration of molecular structure and engine combustion factors[J]. Combustion and Flame, 2019, 199:152-167.
[44] 杨明.喷气燃料模型燃料的构建方法及其燃烧反应机理研究[D].北京:清华大学, 2021. YANG M. A study on the formulation methodology for jet fuel surrogate and its combustion reaction mechanism[D]. Beijing:Tsinghua University, 2021.(in Chinese)
[45] 杨明,王佳星,廖汉东,等.模型燃料构建方法的比较研究:以正癸烷/异辛烷/甲苯三组分模型燃料为例[J].工程热物理学报, 2020, 41(6):1556-1563. YANG M, WANG J X, LIAO H D, et al. A comparative study on methodologies for formulating surrogate fuel:The case of 3-component surrogate fuel composed of n-decane, iso-octane, and toluene[J]. Journal of Engineering Thermophysics, 2020, 41(6):1556-1563.(in Chinese)
[46] YU J, WANG Z J, ZHUO X F, et al. Surrogate definition and chemical kinetic modeling for two different jet aviation fuels[J]. Energy&Fuels, 2016, 30(2):1375-1382.
[47] LUO L, LIU Y C. Variation of gas phase combustion properties of complex fuels during vaporization:Comparison for distillation and droplet scenarios[J]. Proceedings of the Combustion Institute, 2021, 38(2):3287-3294.
[48] NARAYANASWAMY K, PEPIOT P. Simulation-driven formulation of transportation fuel surrogates[J]. Combustion Theory and Modelling, 2018, 22(5):883-897.
[49] YANG M, LIN S Q, LIAO H D, et al. A new jet fuel surrogate formulated by emulating the distribution of pyrolysis products obtained from shock tube experiments[J]. Fuel, 2021, 283:118874.
[50] WANG H, XU R, WANG K, et al. A physics-based approach to modeling real-fuel combustion chemistry-[KG-0.9mm]Ⅰ. Evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations[J]. Combustion and Flame, 2018, 193:502-519.
[51] HONNET S, SESHADRI K, NIEMANN U, et al. A surrogate fuel for kerosene[J]. Proceedings of the Combustion Institute, 2009, 32(1):485-492.
[52] 肖保国,杨顺华,赵慧勇,等. RP-3航空煤油燃烧的详细和简化化学动力学模型[J].航空动力学报, 2010, 25(9):1948-1955. XIAO B G, YANG S H, ZHAO H Y, et al. Detailed and reduced chemical kinetic mechanisms for RP-3 aviation kerosene combustion[J]. Journal of Aerospace Power, 2010, 25(9):1948-1955.(in Chinese)
[53] 曾文,刘靖,张治博,等.一种新的RP-3航空煤油模拟替代燃料[J].航空动力学报, 2017, 32(10):2314-2320. ZENG W, LIU J, ZHANG Z B, et al. A new surrogate fuel of RP-3 kerosene[J]. Journal of Aerospace Power, 2017, 32(10):2314-2320.(in Chinese)
[54] MAO Y B, YU L, QIAN Y, et al. Development and validation of a detailed kinetic model for RP-3 aviation fuel based on a surrogate formulated by emulating macroscopic properties and microscopic structure[J]. Combustion and Flame, 2021, 229:111401.
[55] LIU X, WANG Y, BAI Y Q, et al. Development and verification of a physical-chemical surrogate model of RP-3 kerosene with skeletal mechanism for aircraft SI engine[J]. Fuel, 2022, 311:122626.
[56] DEAN A J, PENYAZKOV O G, SEVRUK K L, et al. Autoignition of surrogate fuels at elevated temperatures and pressures[J]. Proceedings of the Combustion Institute, 2007, 31(2):2481-2488.
[57] 毛业兵. RP-3航空煤油关键组分及其模型燃料的着火特性与燃烧机理研究[D].上海:上海交通大学, 2020. MAO Y B. A study on the autoignition characteristics and kinetic modeling for key components and surrogate fuel of RP-3 aviation kerosene[D]. Shanghai:Shanghai Jiao Tong University, 2020.(in Chinese)
[58] VASU S S, DAVIDSON D F, HANSON R K. Jet fuel ignition delay times:Shock tube experiments over wide conditions and surrogate model predictions[J]. Combustion and Flame, 2008, 152(1-2):125-143.
[59] KUMAR K, SUNG C J. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures:Jet-A and JP-8[J]. Combustion and Flame, 2010, 157(4):676-685.
[60] WANG H W, OEHLSCHLAEGER M A. Autoignition studies of conventional and Fischer-Tropsch jet fuels[J]. Fuel, 2012, 98:249-258.
[61] ZHUKOV V P, SECHENOV V A, STARIKOVSKIY A Y. Autoignition of kerosene (Jet-A)/air mixtures behind reflected shock waves[J]. Fuel, 2014, 126:169-176.
[62] ZHU Y Y, LI S J, DAVIDSON D F, et al. Ignition delay times of conventional and alternative fuels behind reflected shock waves[J]. Proceedings of the Combustion Institute, 2015, 35(1):241-248.
[63] TONI A R D, WERLER M, HARTMANN R M, et al. Ignition delay times of Jet A-1 fuel:Measurements in a high-pressure shock tube and a rapid compression machine[J]. Proceedings of the Combustion Institute, 2017, 36(3):3695-3703.
[64] DAVIDSON D F, ZHU Y, SHAO J, et al. Ignition delay time correlations for distillate fuels[J]. Fuel, 2017, 187:26-32.
[65] BURDEN S, TEKAWADE A, OEHLSCHLAEGER M A. Ignition delay times for jet and diesel fuels:Constant volume spray and gas-phase shock tube measurements[J]. Fuel, 2018, 219:312-319.
[66] XU R, WANG K, BANERJEE S, et al. A physics-based approach to modeling real-fuel combustion chemistry-II. Reaction kinetic models of jet and rocket fuels[J]. Combustion and Flame, 2018, 193:520-537.
[67] KUMAR K, SUNG C J, HUI X. Laminar flame speeds and extinction limits of conventional and alternative jet fuels[J]. Fuel, 2011, 90(3):1004-1011.
[68] CHONG C T, HOCHGREB S. Measurements of laminar flame speeds of liquid fuels:Jet-A1, diesel, palm methyl esters and blends using particle imaging velocimetry (PIV)[J]. Proceedings of the Combustion Institute, 2011, 33(1):979-986.
[69] HUI X, SUNG C J. Laminar flame speeds of transportation-relevant hydrocarbons and jet fuels at elevated temperatures and pressures[J]. Fuel, 2013, 109:191-200.
[70] WU Y, MODICA V, YU X L, et al. Experimental investigation of laminar flame speed measurement for kerosene fuels:Jet A-1, surrogate fuel, and its pure components[J]. Energy&Fuels, 2018, 32(2):2332-2343.
[71] MALEWICKI T, GUDIYELLA S, BREZINSKY K. Experimental and modeling study on the oxidation of Jet A and the n-dodecane/iso-octane/n-propylbenzene/1, 3, 5-trimethylbenzene surrogate fuel[J]. Combustion and Flame, 2013, 160(1):17-30.
[72] 张英佳,黄佐华,王金华,等.激波管研究煤油/空气混合气的自着火特性[J].科学通报, 2011, 56(1):88-96. ZHANG Y J, HUANG Z H, WANG J H, et al. Shock tube study on auto-ignition characteristics of kerosene/air mixtures[J]. Chinese Science Bulletin, 2011, 56(1):88-96.(in Chinese)
[73] 唐洪昌,张昌华,李萍,等.煤油自点火特性的实验研究[J].物理化学学报, 2012, 28(4):787-791. TANG H C, ZHANG C H, LI P, et al. Experimental study of autoignition characteristics of kerosene[J]. Acta Physico-Chimica Sinica, 2012, 28(4):787-791.(in Chinese)
[74] 曾文,李海霞,马洪安,等. RP-3航空煤油着火特性的实验[J].航空动力学报, 2014, 29(3):481-488. ZENG W, LI H X, MA H A, et al. Experiment of ignition characteristics of RP-3 kerosene[J]. Journal of Aerospace Power, 2014, 29(3):481-488.(in Chinese)
[75] ZHANG C H, LI B, RAO F, et al. A shock tube study of the autoignition characteristics of RP-3 jet fuel[J]. Proceedings of the Combustion Institute, 2015, 35(3):3151-3158.
[76] LIU Y X, RICHTER S, NAUMANN C, et al. Combustion study of a surrogate jet fuel[J]. Combustion and Flame, 2019, 202:252-261.
[77] MAO Y B, XIA J, RUAN C, et al. An experimental and kinetic modeling study of a four-component surrogate fuel for RP-3 kerosene[J]. Proceedings of the Combustion Institute, 2021, 38(1):555-563.
[78] LIU W, LIANG X, LIN B Y, et al. A comparative study on soot particle size distributions in premixed flames of RP-3 jet fuel and its surrogates[J]. Fuel, 2020, 259:116222.
[79] LIU W, LIANG X, LI A, et al. Soot particle size distributions in premixed flames of RP-3 jet fuel and its distillates[J]. Fuel, 2020, 267:117244.
[80] 刘靖,胡二江,黄佐华,等. RP-3航空煤油与其模型燃料雾化特性的对比试验[J].航空动力学报, 2022, 37(4):765-773. LIU J, HU E J, HUANG Z H, et al. Comparative experiment of atomization characteristics of RP-3 kerosene and surrogate fuel[J]. Journal of Aerospace Power, 2022, 37(4):765-773.(in Chinese)
[81] LIU J, HU E J, YIN G Y, et al. An experimental and kinetic modeling study on the low-temperature oxidation, ignition delay time, and laminar flame speed of a surrogate fuel for RP-3 kerosene[J]. Combustion and Flame, 2022, 237:111821.
[82] 曾文,陈欣,马洪安,等. RP-3航空煤油层流燃烧特性的实验[J].航空动力学报, 2015, 30(12):2888-2896. ZENG W, CHEN X, MA H A, et al. Experiment on laminar combustion characteristics of RP-3 kerosene[J]. Journal of Aerospace Power, 2015, 30(12):2888-2896.(in Chinese)
[83] HE J N, XIAN L Y, LI P, et al. Experimental study of the soot formation of RP-3 behind reflected shock waves[J]. Fuel, 2017, 200:47-53.
[84] 王秧,王静波,李象远. RP-3航空燃料中低温燃烧机理构建及动力学模拟[J].化学研究与应用, 2018, 30(6):946-952. WANG Y, WANG J B, LI X Y. Low and intermediate-temperature mechanism and simulation for the combustion of RP-3 kerosene[J]. Chemical Research and Application, 2018, 30(6):946-952.(in Chinese)
[85] 杨墨,王静波,李象远. RP-3航空煤油高温骨架机理构建及验证[J].化学研究与应用, 2020, 32(1):106-112. YANG M, WANG J B, LI X Y. Development and validation of a skeletal mechanism for RP-3 aviation fuel at high temperatures[J]. Chemical Research and Application, 2020, 32(1):106-112.(in Chinese)
[86] MAO Y B, WANG S X, WU Z Y, et al. An experimental and kinetic modeling study of n-butylcyclohexane over low-to-high temperature ranges[J]. Combustion and Flame, 2019, 206:83-97.
[87] MAO Y B, FENG Y, WU Z Y, et al. The autoignition of iso-dodecane in low to high temperature range:An experimental and modeling study[J]. Combustion and Flame, 2019, 210:222-235.
[88] MAO Y B, LI A, ZHU L, et al. A detailed chemical mechanism for low to high temperature oxidation of n-butylcyclohexane and its validation[J]. Combustion and Flame, 2019, 210:360-373.
[89] 曾文,李海霞,马洪安,等. RP-3航空煤油模拟替代燃料的化学反应详细机理[J].航空动力学报, 2014, 29(12):2810-2816. ZENG W, LI H X, MA H A, et al. Detailed chemical reaction mechanism of surrogate fuel for RP-3 kerosene[J]. Journal of Aerospace Power, 2014, 29(12):2810-2816.(in Chinese)
[90] 刘宇,曾文,马洪安,等. RP-3航空煤油3组分模拟替代燃料燃烧反应机理[J].航空动力学报, 2016, 31(9):2055-2064. LIU Y, ZENG W, MA H A, et al. Combustion reaction mechanism of three-component simulation surrogate fuel for RP-3 kerosene[J]. Journal of Aerospace Power, 2016, 31(9):2055-2064.(in Chinese)
[91] RANZI E, FRASSOLDATI A, STAGNI A, et al. Reduced kinetic schemes of complex reaction systems:Fossil and biomass-derived transportation fuels[J]. International Journal of Chemical Kinetics, 2014, 46(9):512-542.
[92] YU Z Q, WEI S L, WU C C, et al. Development and verification of RP-3 aviation kerosene surrogate fuel models using a genetic algorithm[J]. Fuel, 2022, 312:122853.
[93] MA H, XIE M Z, ZENG W, et al. Experimental study on combustion characteristics of Chinese RP-3 kerosene[J]. Chinese Journal of Aeronautics, 2016, 29(2):375-385.
[94] TOMLIN A S, PILLING M J, TURÁNYI T, et al. Mechanism reduction for the oscillatory oxidation of hydrogen:Sensitivity and quasi-steady-state analyses[J]. Combustion and Flame, 1992, 91(2):107-130.
[95] LAM S H. Using CSP to understand complex chemical kinetics[J]. Combustion Science and Technology, 1993, 89(5-6):375-404.
[96] LIN S Q, XIE M, WANG J X, et al. Chemical kinetic model reduction through species-targeted global sensitivity analysis (STGSA)[J]. Combustion and Flame, 2021, 224:73-82.
[97] GOODWIN D G, SPETH R L, MOFFAT H K, et al. Cantera:An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.4.0[EB/OL].(2018-08-24)[2023-01-20]. https://zenodo.org/record/1174508#.ZA7aZPnQmKp.
[98] SOBOL' I M. On the distribution of points in a cube and the approximate evaluation of integrals[J]. USSR Computational Mathematics and Mathematical Physics, 1967, 7(4):86-112.
[99] TURÁNYI T. Sensitivity analysis of complex kinetic systems. Tools and applications[J]. Journal of Mathematical Chemistry, 1990, 5(3):203-248.[WX)] [WX (3KG0,25*2]
[100] BROWN N J, LI G P, KOSZYKOWSKI M L. Mechanism reduction via principal component analysis[J]. International Journal of Chemical Kinetics, 1997, 29(6):393-414.
[101] LU T F, LAW C K. A directed relation graph method for mechanism reduction[J]. Proceedings of the Combustion Institute, 2005, 30(1):1333-1341.
[102] LUO Z Y, LU T F, LIU J W. A reduced mechanism for ethylene/methane mixtures with excessive NO enrichment[J]. Combustion and Flame, 2011, 158(7):1245-1254.
[103] NIEMEYER K E, SUNG C J, RAJU M P. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis[J]. Combustion and Flame, 2010, 157(9):1760-1770.
[104] SUN W T, CHEN Z, GOU X L, et al. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms[J]. Combustion and Flame, 2010, 157(7):1298-1307.
[105] KALOGIROU S A. Artificial intelligence for the modeling and control of combustion processes:A review[J]. Progress in Energy and Combustion Science, 2003, 29(6):515-566.
[106] ZHOU L, SONG Y T, JI W Q, et al. Machine learning for combustion[J]. Energy and AI, 2022, 7:100128.
[107] HAO S, HAN X, LIU H, et al. Prediction and sensitivity analysis of the cetane number of different biodiesel fuels using an artificial neural network[J]. Energy&Fuels, 2021, 35(21):17711-17720.
[108] LI Y P, JIA M, HAN X, et al. Towards a comprehensive optimization of engine efficiency and emissions by coupling artificial neural network (ANN) with genetic algorithm (GA)[J]. Energy, 2021, 225:120331.
[109] ELLIOTT L, INGHAM D B, KYNE A G, et al. Reaction mechanism reduction and optimization using genetic algorithms[J]. Industrial&Engineering Chemistry Research, 2005, 44(4):658-667.
[110] 曾文,李海霞,马洪安,等. RP-3航空煤油模拟替代燃料的化学反应简化机理[J].推进技术, 2014, 35(8):1139-1145. ZENG W, LI H X, MA H A, et al. Reduced chemical reaction mechanism of surrogate fuel for RP-3 kerosene[J]. Journal of Propulsion Technology, 2014, 35(8):1139-1145.(in Chinese)
[111] LIU Y P, LIU Y C, CHEN D B, et al. A simplified mechanistic model of three-component surrogate fuels for RP-3 aviation kerosene[J]. Energy&Fuels, 2018, 32(9):9949-9960.
[112] 于维铭,袁振,钟北京.航空煤油火焰传播速度实验与动力学研究[J].工程热物理学报, 2014, 35(10):2102-2107. YU W M, YUAN Z, ZHONG B J. Experimental and kinetic study on flame speed of aviation kerosene[J]. Journal of Engineering Thermophysics, 2014, 35(10):2102-2107.(in Chinese)
[113] YU B B, JIANG X S, HE D H, et al. Development of a chemical-kinetic mechanism of a four-component surrogate fuel for RP-3 kerosene[J]. ACS Omega, 2021, 6(36):23485-23494.
[114] BAI Y Q, WANG Y, WANG X C, et al. Development of physical-chemical surrogate models and skeletal mechanism for the spray and combustion simulation of RP-3 kerosene fuels[J]. Energy, 2021, 215:119090.
[115] YANG B. Towards predictive combustion kinetic models:Progress in model analysis and informative experiments[J]. Proceedings of the Combustion Institute, 2021, 38(1):199-222.
[116] 杨斌,刘仲铠,林柯利,等.面向碳中和与先进动力的燃烧反应动力学研究方法进展[J].清华大学学报(自然科学版), 2022, 62(4):663-677. YANG B, LIU Z K, LIN K L, et al. Towards carbon neutrality and advanced engines:Progress in combustion kinetics research methods[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(4):663-677.(in Chinese)
[117] YANG M, LIN S, WU Y, et al. Comparative analysis of jet fuel surrogates based on a kinetic scheme from CRECK modeling group[J].(submmited)
[118] LIN S Q, ZHOU W X, WU Y, et al. Evaluation of reduced combustion kinetic mechanisms using global sensitivity-based similarity analysis (GSSA)[J]. Proceedings of the Combustion Institute, 2021, 38(1):1081-1088.
[119] 林圣强.考虑不确定性的碳氢燃料反应动力学机理简化方法研究[D].哈尔滨:哈尔滨工业大学, 2021. LIN S Q. Study on reduction methods for reaction kinetic mechanisms of hydrocarbon fuels under uncertainty[D]. Harbin:Harbin Institute of Technology, 2021.(in Chinese)
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 王方, 韩琪炜, 李典望, 金捷. 航空煤油多液滴蒸发特性实验[J]. 清华大学学报(自然科学版), 2024, 64(1): 63-74.
[3] 杨斌, 刘仲铠, 林柯利, 廖万雄, 王乔. 面向碳中和与先进动力的燃烧反应动力学研究方法进展[J]. 清华大学学报(自然科学版), 2022, 62(4): 663-677.
[4] 裴鑫岩, 侯凌云. 不同组分对航空煤油物性替代模型的影响[J]. 清华大学学报(自然科学版), 2017, 57(7): 774-779.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn