Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (5): 754-764    DOI: 10.16511/j.cnki.qhdxxb.2022.26.055
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
顶部多点竖向排烟下地铁隧道烟气控制研究
钟茂华1, 胡鹏2, 陈俊沣1, 程辉航1, 吴乐1, 魏旋3
1. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
2. 东北大学 资源与土木工程学院, 沈阳 110819;
3. 新疆维泰开发建设(集团)股份有限公司, 乌鲁木齐 830000
Research for smoke control in a subway tunnel under the ceiling multi-point vertical smoke exhaust
ZHONG Maohua1, HU Peng2, CHEN Junfeng1, CHENG Huihang1, WU Le1, WEI Xuan3
1. Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China;
3. Xinjiang Vital Development and Construction (Group) Co., Ltd., Urumqi 830000, China
全文: PDF(12667 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 通过在某带有独立通风隧道的地铁区间隧道开展0.25~1.25 MW规模的现场火灾实验,对烟气温度分布进行分析,利用火灾动力学模拟工具(fire dynamics simulator,FDS)建立对应实际尺寸的数值模拟隧道模型,展开抑制下游烟气蔓延的通风隧道临界排风量以及排烟效率的研究。对于横向水平中心线温度,火源相对于排烟口的位置对火源附近温度升高区域的范围基本无影响。在地铁隧道内设置进风量可抑制烟气逆流,但同时会造成下游烟气失稳,排烟口无法完全排出高温烟气。对于在不同排风量及火源功率(heat release rate,HRR)的情况下,排烟效率先增大后保持不变;当排风量达到一定值,即等于临界排风量时,排烟口能够完全排出高温烟气,排烟口排烟效率为1,临界值与HRR相关。计算出临界Fr约2.7,略高于此前的研究。得到HRR的经验公式,排烟效率与无量纲HRR和无量纲风速的相关性呈现分段函数关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟茂华
胡鹏
陈俊沣
程辉航
吴乐
魏旋
关键词 地铁隧道通风隧道全尺寸数值模拟Fr排烟效率    
Abstract:[Objective] To investigate the metro interval tunnel fire under the ceiling multipoint vertical smoke exhaust, the smoke temperature distribution under the tunnel ceiling is analyzed by performing a series of field fire experiments at a scale of 0.25-1.25 MW in a subway section tunnel.[Methods] A fire dynamics simulator numerical simulation tunnel model corresponding to the actual size is established. Subsequently, by increasing the fire source heat release rate (5.00-20.00 MW) and the exhaust air volume of the ventilation tunnel (0-120 m3/s), the critical exhaust air volume and exhaust efficiency is investigated, which can help in mitigating the spread of downstream smoke.[Results] According to the experiment and simulation results, different fire source positions exhibited no effect on the range of the lateral centerline temperature increase area. The position of the smoke exhaust port enabled the suppression of the increase in the ceiling temperature due to the elevated fire source heat release rate. Thus, establishing the air inlet in the metro tunnel could suppress the reverse flow of the smoke; however, it would make the downstream smoke unstable, and the exhaust port could not completely discharge the high-temperature smoke. The smoke temperature of the exhaust port near the fire source, which was related to the fire source heat release rate, but was almost independent of the exhaust air volume. With the increase of the exhaust air volume, it almost remained unchanged. Concurrently, the smoke exhaust port near the fire source played a major role in exhausting the smoke and heat. A critical exhaust air volume completely exhausted all the smoke generated by the fire, whose value was related to the fire source heat release rate. The Fr characterized the ratio of the inertial force to the buoyancy of the smoke layer. The dimensionless Fr was used to determine whether "plug-holing" occurs in the smoke exhaust system. The critical Fr was calculated to be approximately 2.7, slightly higher than that in previous studies.[Conclusions] The exhaust efficiency is an important parameter reflecting the exhaust effect of the exhaust port in the tunnel. The smoke exhaust efficiency of the exhaust port is calculated using the ratio of the mass flow rate of CO in the smoke discharged from the exhaust port and the total downstream CO mass flow rate of the smoke. With the increase in the exhaust air volume, the mass flow of CO discharged from the exhaust port close to the fire source first increases and then gradually becomes flat primarily because the exhaust efficiency of the exhaust port reaches saturation. Therefore, for different exhaust air volumes and fire source heat release rates, the exhaust efficiency first increases and then remains constant. Thus, when the exhaust air volume reaches a certain value, the exhaust port can completely discharge all the high-temperature smoke, and the exhaust efficiency of the port becomes 1. The empirical formula among the smoke exhaust efficiency, the Fr, and the dimensionless wind speed is obtained, and the empirical formula presents a piecewise function relationship.
Key wordsmetro tunnel    ventilation tunnel    full scale    numerical simulation    Fr    smoke extraction efficiency
收稿日期: 2022-06-13      出版日期: 2023-04-23
基金资助:国家自然科学基金重大项目(72091512);国家自然科学基金青年科学基金项目(51906123)
作者简介: 钟茂华(1970—),男,研究员。E-mail:mhzhong@tsinghua.edu.cn
引用本文:   
钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
ZHONG Maohua, HU Peng, CHEN Junfeng, CHENG Huihang, WU Le, WEI Xuan. Research for smoke control in a subway tunnel under the ceiling multi-point vertical smoke exhaust. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 754-764.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.055  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I5/754
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] HU L H, FONG N K, YANG L Z, et al. Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel:Fire dynamics simulator comparisons with measured data[J]. Journal of Hazardous Materials, 2007, 140(1-2):293-298.
[2] INGASON H, LI Y Z, LÖNNERMARK A. Tunnel fire dynamics[M]. New York:Springer, 2015.
[3] LÖNNERMARK A, INGASON H, LI Y Z, et al. Fire development in a 1/3 train carriage mock-up[J]. Fire Safety Journal, 2017, 91:432-440.
[4] 钟茂华, 刘畅, 田向亮, 等. 地铁同站台高架换乘车站火灾全尺寸实验研究:(1)火灾场景设计[J]. 中国安全生产科学技术, 2018, 14(3):27-33. ZHONG M H, LIU C, TIAN X L, et al. Full-scale experimental study on fire in one-platform-interchange elevated metro station:(1) design of fire scenario[J]. Journal of Safety Science and Technology, 2018, 14(3):27-33. (in Chinese)
[5] 钟茂华, 刘畅, 田向亮, 等. 地铁同站台高架换乘车站火灾全尺寸实验研究:(2)站厅火灾[J]. 中国安全生产科学技术, 2018, 14(4):5-12. ZHONG M H, LIU C, TIAN X L, et al. Full-scale experimental study on fire in one-platform-interchange elevated metro station:(2) station hall fire[J]. Journal of Safety Science and Technology, 2018, 14(4):5-12. (in Chinese)
[6] 史聪灵, 钟茂华, 何理, 等. 地铁车站及隧道全尺寸火灾实验研究(1):实验设计[J]. 中国安全生产科学技术, 2012, 8(6):22-28. SHI C L, ZHONG M H, HE L, et al. Investigation of full-scale fire experiments in metro station and tunnel (1):Experimental setup[J]. Journal of Safety Science and Technology, 2012, 8(6):22-28. (in Chinese)
[7] 史聪灵, 钟茂华, 汪良旗, 等. 地铁车站及隧道全尺寸火灾实验研究(2):区间隧道火灾[J]. 中国安全生产科学技术, 2012, 8(8):28-34. SHI C L, ZHONG M H, WANG L Q, et al. Investigation of full-scale burning experiments in metro station and tunnel (2):Interval tunnel fires[J]. Journal of Safety Science and Technology, 2012, 8(8):28-34. (in Chinese)
[8] WENG M C, YU L X, LIU F, et al. Full-scale experiment and CFD simulation on smoke movement and smoke control in a metro tunnel with one opening portal[J]. Tunnelling and Underground Space Technology, 2014, 42:96-104.
[9] 翁庙成, 余龙星, 刘方, 等. 一端开敞的地铁区间隧道烟气流动特性及其烟气控制研究[J]. 中南大学学报(自然科学版), 2014, 45(7):2311-2319. WENG M C, YU L X, LIU F, et al. Study on fire smoke flow and smoke control in underground metro tunnel with one end to outside[J]. Journal of Central South University (Science and Technology), 2014, 45(7):2311-2319. (in Chinese)
[10] 王维. 城市地下公路隧道自然排烟竖井设置[J]. 消防科学与技术, 2013, 32(6):598-601. WANG W. Layout of vertical shaft of natural smoke exhaust in city underground tunnel[J]. Fire Science and Technology, 2013, 32(6):598-601. (in Chinese)
[11] TONG Y, SHI M H, GONG Y F, et al. Full-scale experimental study on smoke flow in natural ventilation road tunnel fires with shafts[J]. Tunnelling and Underground Space Technology, 2009, 24(6):627-633.
[12] FAN C G, JI J, GAO Z H, et al. Experimental study of air entrainment mode with natural ventilation using shafts in road tunnel fires[J]. International Journal of Heat and Mass Transfer, 2013, 56(1-2):750-757.
[13] JI J, GAO Z H, FAN C G, et al. A study of the effect of plug-holing and boundary layer separation on natural ventilation with vertical shaft in urban road tunnel fires[J]. International Journal of Heat and Mass Transfer, 2012, 55(21-22):6032-6041.
[14] XU Z S, LIU Q L, HE L, et al. Study on the heat exhaust coefficient and smoke flow characteristics under lateral smoke exhaust in tunnel fires[J]. Fire and Materials, 2019, 43(7):857-867.
[15] XU Z S, CHEN H G, HE L, et al. Analysis on the influence of the smoke block board on the entrainment phenomena near a mechanical exhaust vent[J]. Case Studies in Thermal Engineering, 2018, 12:569-577.
[16] 陶浩文, 刘耀辉, 徐志胜, 等. 隧道挡风板对竖井自然排烟效率的影响研究[J/OL]. 安全与环境学报. (2021-08-11)[2022-06-15]. DOI:10.13637/j.issn.1009-6094.20210934. TAO H W, LIU Y H, XU Z S, et al. Study on the effect of tunnel barge boards on the smoke extraction efficiency of shaft with natural ventilation[J/OL]. Journal of Safety and Environment. (2021-08-11)[2022-06-15]. DOI:10.13637/j.issn.1009-6094.20210934. (in Chinese)
[17] HINKLEY P L. Rates of 'production' of hot gases in roof venting experiments[J]. Fire Safety Journal, 1986, 10(1):57-65.
[18] MORGAN H P, GARDINER J P. Design principles for smoke ventilation in enclosed shopping centres[M]. Garston:Building Research Establishment, 1990.
[19] LI Y Z, LEI B, INGASON H. Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires[J]. Fire Safety Journal, 2010, 45(6-8):361-370.
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
[2] 石云姣, 赵宁波, 郑洪涛. 进气畸变对重型燃气轮机燃压缸流动特性影响[J]. 清华大学学报(自然科学版), 2024, 64(1): 90-98.
[3] 岳顺禹, 龙增, 仇培云, 钟茂华, 华福才. 独头隧道火灾全尺寸实验研究[J]. 清华大学学报(自然科学版), 2023, 63(6): 917-925.
[4] 李聪健, 高航, 刘奕. 基于数值模拟和机器学习的风场快速重构方法[J]. 清华大学学报(自然科学版), 2023, 63(6): 882-887.
[5] 孙继昊, 罗绍文, 赵宁波, 杨慧玲, 郑洪涛. 甲烷/空气燃烧NOx排放数值模型对比[J]. 清华大学学报(自然科学版), 2023, 63(4): 623-632.
[6] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[7] 高畅, 李岩军, 余莉, 聂舜臣. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 322-329.
[8] 陈冠华, 陈雅倩, 周宁, 贾贺, 荣伟, 薛晓鹏. 具有横向运动能力的圆形伞的设计[J]. 清华大学学报(自然科学版), 2023, 63(3): 338-347.
[9] 闫慧慧, 李昊昱, 周伯豪, 张煜洲, 兰旭东. 离心压气机性能影响机理研究及优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1672-1685.
[10] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[11] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[12] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[13] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[14] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
[15] 韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn