Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (6): 910-916    DOI: 10.16511/j.cnki.qhdxxb.2023.22.024
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
基于TDLAS的光学探针式初期火灾探测系统
李开远, 袁宏永, 陈涛, 黄丽达
清华大学 工程物理系, 公共安全研究院, 北京 100084
Tunable diode laser absorption spectroscopy (TDLAS)-based optical probe initial fire detection system
LI Kaiyuan, YUAN Hongyong, CHEN Tao, HUANG Lida
Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(2970 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了实现火灾初期探测,设计了光学探针式初期火灾探测系统。该探测系统基于可调谐二极管激光吸收光谱(TDLAS)技术与激光遥测技术,采用波长为2.33 μm的激光光源与波长调制光谱(WMS)技术,利用激光作为光学探针替代传统吸收测量腔室,实现了火灾初期基于CO路径积分体积分数的开放光路探测。系统对10 m内的反射面实现了不低于20(μL/L)·m的检测限。国标木材热解火实验表明,该文研制的系统与提出的阈值报警算法具备实现初期火灾报警响应的能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李开远
袁宏永
陈涛
黄丽达
关键词 激光吸收光谱激光探测一氧化碳(CO)火灾探测    
Abstract:[Objective] Current fire smoke detectors are susceptible to many factors that can significantly affect their accuracy, such as environmental disturbances and combustion states, resulting in false alarms. Moreover, point fire detectors inevitably cause time lags for alarms due to their optical darkrooms and insect-proof nets, delaying critical rescue time. Therefore, focusing on the limitations of point carbon monoxide (CO) detectors with absorbing gas cells, this study proposes an optical probe initial fire detection system based on tunable diode laser absorption spectroscopy (TDLAS) and laser remote sensing. Then, we present a preliminary threshold-based fire alarm algorithm.[Methods] Accordingly, this study's detection system relied on TDLAS and laser remote sensing, including wavelength modulation spectroscopy, to extract CO signals from an open-path geometry. A laser (wavelength=2331.93nm) was also used as an optical probe to replace the traditional absorption measurement chambers, achieving a CO path-integrated volume fraction measurement under complex initial fire conditions. First, we tested the signal responses of this detection system for different CO volume fraction combinations, incidence angles, and reflectances using a standard gas cell (length=0.5m) placed at the optical path and a standard reflector plate placed 4.4m from the light source to examine the limitations of the system. Then, we tested the received signal power at different distances, examined the CO released from wood pyrolysis fires, calculated the corresponding integral volume fractions, and set an appropriate threshold based on the detector's limit to verify whether this optical probe fire detector could meet the requirements.[Results] The experimental results of our limitation tests showed the following: (1) At a distance of 4.4m and target reflectance of 0.69, the theoretical detection limit was approximately 5 (μL/L)·m, and the actual detection limit was 26.75 (μL/L)·m. (2) As the reflectance decreased, the absolute value of the signal intensity also decreased, increasing the uncertainty in the measured volume fraction by a detection limit of 88.22 (μL/L)·m and reflectance of 0.07. (3) As predicted by calculations, although the absolute value of the second harmonic signal varied slightly for the 0°-10° incidence angle, the corresponding normalized absorption peak outputs were essentially the same. (4) When the distance to the target reflective surface was within 10 m, a detection limit of no less than 20 (μL/L)·m was achieved. Conversely, the standard wood pyrolysis fire tests showed that the system with a theoretical detection limit of 30 (μL/L)·m and a proposed threshold alarm value of 70 (μL/L)·m potentially triggered the initial fire alarm.[Conclusions] This study determines the feasibility of an open optical path to detect initial CO release from fire through detection limit tests and standard fire tests. Overall, the proposed method integrating TDLAS and laser remote sensing achieves the expected goal of detecting initial fire, significantly addressing the shortcomings of gas detectors using absorption cavities and point fire detectors.
Key wordslaser absorption spectroscopy    laser detection    carbon monoxide (CO)    fire detection
收稿日期: 2022-12-13      出版日期: 2023-05-12
基金资助:国家重点研发计划课题(2022YFC3003103)
通讯作者: 袁宏永,研究员,E-mail:hy-yuan@tsinghua.edu.cn     E-mail: hy-yuan@tsinghua.edu.cn
作者简介: 李开远(1992—),男,博士研究生。
引用本文:   
李开远, 袁宏永, 陈涛, 黄丽达. 基于TDLAS的光学探针式初期火灾探测系统[J]. 清华大学学报(自然科学版), 2023, 63(6): 910-916.
LI Kaiyuan, YUAN Hongyong, CHEN Tao, HUANG Lida. Tunable diode laser absorption spectroscopy (TDLAS)-based optical probe initial fire detection system. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 910-916.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.024  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I6/910
  
  
  
  
  
  
  
  
  
  
[1] KRUELL W, SCHULTZE T, TOBERA R, et al. Analysis of dust properties to solve the complex problem of non-fire sensitivity testing of optical smoke detectors[J]. Procedia Engineering, 2013, 62:859-867.
[2] CLEARY T G, CHERNOVSKY A, GROSSHANDLER W L, et al. Particulate entry lag in spot-type smoke detectors[J]. Fire Safety Science, 2000, 6:779-790.
[3] 郑永熙.大空间建筑火灾自动报警探测器应用[J].建筑电气, 2019, 38(6):53-57. ZHENG Y X. Application of automatic fire alarm detectors in large-space buildings[J]. Building Electricity, 2019, 38(6):53-57.(in Chinese)
[4] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.特种火灾探测器:GB 15631-2008[S].北京:中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Special type fire detectors:GB 15631-2008[S]. Beijing:Standards Press of China, 2009.(in Chinese)
[5] HODGKINSON J, TATAM R P. Optical gas sensing:A review[J]. Measurement Science and Technology, 2013, 24(1):012004.
[6] HANGAUER A, CHEN J, STRZODA R, et al. Performance of a fire detector based on a compact laser spectroscopic carbon monoxide sensor[J]. Optics Express, 2014, 22(11):13680-13690.
[7] 蒋亚龙,祝玉泉,王进军.可调谐半导体激光吸收光谱技术用于火灾探测:初步试验[J].自然灾害学报, 2011, 20(1):56-61. JIANG Y L, ZHU Y Q, WANG J J. Application of tunable diode laser absorption spectroscopy to fire detection:Preliminary experiment[J]. Journal of Natural Disasters, 2011, 20(1):56-61.(in Chinese)
[8] DANG J M, YU H Y, SONG F, et al. An early fire gas sensor based on 2.33 μm DFB laser[J]. Infrared Physics&Technology, 2018, 92:84-89.
[9] DEMTRÖDER W. Laser spectroscopy 1:Basic principles[M]. 5th ed. Berlin:Springer, 2014.
[10] GORDON I E, ROTHMAN L S, HARGREAVES R J, et al. The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 277:107949.
[11] TRYNER J, PHILLIPS M, QUINN C, et al. Design and testing of a low-cost sensor and sampling platform for indoor air quality[J]. Building and Environment, 2021, 206:108398.
[12] National Fire Protection Association of the USA. Standard for smoke control systems:NFPA 92:2021[S]. Quincy:NFPA, 2021.
[13] ISEKI T, TAI H, KIMURA K. A portable remote methane sensor using a tunable diode laser[J]. Measurement Science and Technology, 2000, 11(6):594-602.
[14] REID J, LABRIE D. Second-harmonic detection with tunable diode lasers:Comparison of experiment and theory[J]. Applied Physics B, 1981, 26(3):203-210.
[15] HODGKINSON J, VAN WELL B, PADGETT M, et al.Modelling and interpretation of gas detection using remotelaser pointers[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2006, 63(5):929-939.
[16] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.点型火灾感烟探测器:GB 4715-2005[S].北京:中国标准出版社, 2006. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. Smoke detectors:Point detectors using scattered light, transmitted light or ionization GB 4715-2005[S]. Beijing:Standards Press of China, 2006.(in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn