Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (8): 1219-1225    DOI: 10.16511/j.cnki.qhdxxb.2022.25.017
  论文 本期目录 | 过刊浏览 | 高级检索 |
高温气冷堆主氦风机预防性维修策略研究
陈璞, 童节娟, 刘涛, 张勤昭, 王宏
清华大学 核能与新能源技术研究院, 北京 100084
Preventive maintenance strategy of the helium circulator in the high-temperature gas-cooled reactor
CHEN Pu, TONG Jiejuan, LIU Tao, ZHANG Qinzhao, WANG Hong
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(1310 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 高温气冷堆主氦风机是清华大学自主研发的先进核能核心装备之一,对于反应堆的正常运行至关重要。主氦风机停机会导致反应堆紧急停堆,直接影响核电厂的运行,并可能带来安全风险。因此,需要评估主氦风机的可靠性,并对主氦风机开展预防性维修策略研究,以保障高温气冷堆核电厂高质量运行。首先,该文使用故障模式、影响和危害性分析(failure mode,effects and criticality analysis,FMECA)方法识别主氦风机的关键重要部件;然后,基于各部件的通用数据评估得出主氦风机的故障率及各部件故障率占比,为提高主氦风机的运行可靠性提供参考依据;最后,使用以可靠性为中心的维修分析(reliability centered maintenance analysis,RCMA)对主氦风机的预防性维修策略进行规划,提出预防性维修方案建议。该文研究成果可为新研核能设备提升设计质量提供参考,为其他相关核能设施开展可靠性和维修性研究提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈璞
童节娟
刘涛
张勤昭
王宏
关键词 主氦风机故障模式、影响和危害性分析以可靠性为中心的维修分析高温气冷堆    
Abstract:[Objective] The helium circulator of the high-temperature gas-cooled reactor (HTGR) is advanced core equipment independently developed by Tsinghua University and is highly important for normal reactor operation. The shutdown of the helium circulator will lead to an emergency shutdown of the reactor, directly affecting the operation of the nuclear power plant and possibly causing safety problems. Therefore, it is necessary to evaluate the reliability of the helium circulator and study the preventive maintenance strategy to ensure the high-quality operation of the HTGR demonstration project (HTR-PM).[Methods] First, we used the failure mode, effects and criticality analysis (FMECA) method to analyze the failure modes, causes, effects, and degree of severity of the components of the helium circulator and list the usage guarantee recommendations. Since FMECA has not been performed on HTGR thus far, we referred to the national military standard to specify the severity degree of the helium circulator's failure consequences. Through FMECA, we can also identify its key components, the parts that must be emphasized during the design and maintenance of the circulator. Then, we used the general component data to determine the failure rate of the circulator and the failure rate proportion of each component. Finally, we used the reliability-centered maintenance analysis (RCMA) method to plan the preventive maintenance strategy of the circulator and put forward preventive maintenance plan suggestions. Preventive maintenance is mainly performed through condition monitoring, function test, etc., which will not affect the normal operation of nuclear power plants. According to RCMA, the preventive maintenance measures of the helium circulator mainly include condition-based maintenance (CBM), usage inspection, function test, and so on. CBM can be performed online, and other preventive maintenance measures can be completed during the overhaul; thus, these measures can effectively improve system availability and reduce financial losses. In addition, the maintenance interval is mainly based on the severity degree and the proportion of the failure rate of components, as well as the corresponding maintenance measures. A more accurate maintenance interval must be updated after receiving the monitoring data feedback.[Results] The calculated failure rate of the helium circulator was 0.18 times/year, which met the design criteria that the helium circulator shut down due to failure should occur less than once a year. However, a more accurate failure rate evaluation needs to be further updated after accumulating actual operation data. The calculation results showed that the drive motor in the helium circulator exhibited the highest failure rate of 88.57%, while that of the frequency converter in the drive motor was 60.82%. Therefore, the reliability of these components should be increased to improve that of the helium circulator. The reliability prediction results can provide a reference for improving the design and then the operation reliability of the helium circulator.[Conclusions] The research process of this paper is significant as a reference for conducting reliability analysis, improving the design quality, and planning maintenance strategy of newly developed nuclear power equipment, and it can also provide insights for relevant analyses of equipment in other nuclear power plants.
Key wordshelium circulator    failure mode, effects and criticality analysis (FMECA)    reliability-centered maintenance analysis (RCMA)    high-temperature gas-cooled reactor
收稿日期: 2022-09-06      出版日期: 2023-07-22
通讯作者: 刘涛,副研究员,E-mail:liu-tao@tsinghua.edu.cn      E-mail: liu-tao@tsinghua.edu.cn
作者简介: 陈璞(1998-),男,硕士研究生。
引用本文:   
陈璞, 童节娟, 刘涛, 张勤昭, 王宏. 高温气冷堆主氦风机预防性维修策略研究[J]. 清华大学学报(自然科学版), 2023, 63(8): 1219-1225.
CHEN Pu, TONG Jiejuan, LIU Tao, ZHANG Qinzhao, WANG Hong. Preventive maintenance strategy of the helium circulator in the high-temperature gas-cooled reactor. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1219-1225.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.25.017  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I8/1219
  
  
  
  
  
  
  
  
  
[1] ZHAO G, YE P, WANG H, et al. Endurance test of full-scale mock-up helium circulator for HTR-PM[J]. Nuclear Engineering and Design, 2018, 329:20-24.
[2] 张作义, 吴宗鑫, 王大中, 等. 我国高温气冷堆发展战略研究[J]. 中国工程科学, 2019, 21(1):12-19. ZHANG Z Y, WU Z X, WANG D Z, et al. Development strategy of high temperature gas cooled reactor in China[J]. Strategic Study of CAE, 2019, 21(1):12-19. (in Chinese)
[3] 王捷, 王宏, 赵钢, 等. 高温气冷堆氦气透平压气机和主氦风机研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4):350-360. WANG J, WANG H, ZHAO G, et al. Helium turbo-compressor and circulator for a high temperature gas-cooled reactor[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(4):350-360. (in Chinese)
[4] ZHOU H Z, WANG J. Helium circulator design and testing[J]. Nuclear Engineering and Design, 2002, 218(1-3):189-198.
[5] SINGH J, SINGH S, SINGH A. Distribution transformer failure modes, effects and criticality analysis (FMECA)[J]. Engineering Failure Analysis, 2019, 99:180-191.
[6] CATELANI M, CIANI L, CRISTALDI L, et al. Electrical performances optimization of photovoltaic modules with FMECA approach[J]. Measurement, 2013, 46(10):3898-3909.
[7] 陈杰. 核电厂设备水热交换器可靠性分析[D]. 上海:上海交通大学, 2017. CHEN J. Reliability analysis of water heat exchanger in nuclear plant[D].Shanghai:Shanghai Jiao Tong University, 2017. (in Chinese)
[8] 宗树枫. 核电厂数字化反应堆控制系统可靠性分析[D]. 上海:上海交通大学, 2019. ZONG S F. Reliability analysis of digital nuclear power control system of nuclear power plant[D]. Shanghai:Shanghai Jiao Tong University, 2019. (in Chinese)
[9] 袁帅. 基于FMECA的机械密封系统失效分析[D]. 青岛:中国石油大学(华东), 2015. YUAN S. Failure analysis of the mechanical seal system based on FMECA[D]. Qingdao:China University of Petroleum (East China), 2015. (in Chinese)
[10] 孙黎. 军工企业型号产品关键件和重要件的识别方法[J]. 质量与认证, 2016(12):56-57. SUN L. The identification method of key parts and important parts of military enterprise model products[J].China Quality Certification, 2016(12):56-57. (in Chinese)
[11] 李瑞莹, 康锐, 党炜. 机械产品可靠性预计方法的比较与选择[J]. 工程机械, 2009, 40(5):53-57. LI R Y, KANG R, DANG W. Comparison and selection of prediction methods for mechanical products reliability[J].Construction Machinery and Equipment, 2009, 40(5):53-57. (in Chinese)
[12] 李晓明. 基于RCM的核电站维修优化研究与应用[D]. 武汉:华中科技大学, 2005. LI X M. A research and application of RCM in optimization of maintenance for nuclear power stations[D]. Wuhan:Huazhong University of Science and Technology, 2005. (in Chinese)
[13] 任晓伟, 王华吉, 樊晓晨, 等. 基于RCMA的运载火箭活动发射平台大修方法设计研究[J]. 导弹与航天运载技术, 2022(1):79-84. REN X W, WANG H J, FAN X C, et al. Research on capital repair method of launch vehicle launch pad based on RCMA[J]. Missiles and Space Vehicles, 2022(1):79-84. (in Chinese)
[14] 武禹陶, 贾希胜, 温亮, 等. 以可靠性为中心的维修(RCM)发展与应用综述[J]. 军械工程学院学报, 2016, 28(4):13-21. WU Y T, JIA X S, WEN L, et al. A review of reliability centered maintenance (RCM):Development and application[J]. Journal of Ordnance Engineering College, 2016, 28(4):13-21. (in Chinese)
[15] ENJAVIMADAR M H, RASTEGAR M. Optimal reliability-centered maintenance strategy based on the failure modes and effect analysis in power distribution systems[J]. Electric Power Systems Research, 2022, 203:107647.
[16] 陈宇, 朱卫海. 以可靠性为中心的维修技术在大亚湾核电站的应用[J]. 电力设备, 2008, 9(12):113-116. CHEN Y, ZHU W H. Application of RCM in Dayabay nuclear power station[J]. Electrical Equipment, 2008, 9(12):113-116. (in Chinese)
[17] MOKASHI A J, WANG J, VERMAR A K. A study ofreliability-centredmaintenance in maritime operations[J]. MarinePolicy, 2002, 26(5):325-335.
[18] 王文智. 以可靠性为中心的维修分析在装备寿命周期内的应用[J]. 航空维修与工程, 2021(12):23-27. WANG W Z. Application of reliability centered maintenance analysis in equipment life cycle[J]. Aviation Maintenance & Engineering, 2021(12):23-27. (in Chinese)
[19] 吕一农. 以可靠性为中心的维修(RCM)在电力系统中的应用研究[D]. 杭州:浙江大学, 2005. LV Y N. Research on application of reliability-centered maintenance (RCM) in power system[D]. Hangzhou:Zhejiang University, 2005. (in Chinese)
[1] 苏阳, 李晓伟, 吴莘馨, 张作义. 核反应堆蒸汽发生器两相流不稳定性现象规律、研究方法及应用[J]. 清华大学学报(自然科学版), 2023, 63(8): 1184-1203.
[2] 吴浩, 牛风雷. 高温球床辐射传热中的机器学习模型[J]. 清华大学学报(自然科学版), 2023, 63(8): 1213-1218.
[3] 曲新鹤, 胡庆祥, 倪航, 彭威, 赵钢, 王捷. 基于高温气冷堆的制氢耦合炼钢系统初步设计和能量分析[J]. 清华大学学报(自然科学版), 2023, 63(8): 1236-1245.
[4] 曹军文, 覃祥富, 胡轶坤, 张文强, 于波, 张佑杰. 高温气冷堆耦合高温电解规模化制氢系统仿真[J]. 清华大学学报(自然科学版), 2023, 63(8): 1246-1256.
[5] 高群翔, 孙琦, 彭威, 张平, 赵钢. 碘硫循环制氢中硫酸分解的全过程模拟方法[J]. 清华大学学报(自然科学版), 2023, 63(1): 24-32.
[6] 史力, 赵加清, 刘兵, 李晓伟, 雒晓卫, 张征明, 张平, 孙立斌, 吴莘馨. 高温气冷堆关键材料技术发展战略[J]. 清华大学学报(自然科学版), 2021, 61(4): 270-278.
[7] 李晓伟, 吴莘馨, 张作义, 赵加清, 雒晓卫. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版), 2021, 61(4): 329-337.
[8] 王捷, 王宏, 赵钢, 杨小勇, 叶萍, 曲新鹤. 高温气冷堆氦气透平压气机和主氦风机研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 350-360.
[9] 刘仁杰, 孙跃文, 刘锡明, 苗积臣, 周立业, 丛鹏. 基于螺旋CT的高温气冷堆石墨构件及碳砖缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(4): 367-376.
[10] 孙世妍, 张佑杰, 郑艳华, 夏冰. HTR-10超高温运行堆芯温度场分析[J]. 清华大学学报(自然科学版), 2021, 61(11): 1301-1307.
[11] 徐晓娜, 黄晓津. 高温气冷堆核电站计算机化规程流程的建模和验证[J]. 清华大学学报(自然科学版), 2018, 58(7): 658-663.
[12] 莫非, 张佑杰, 王宏, 张勤昭. HTR-PM主氦风机电机冷却性能分析[J]. 清华大学学报(自然科学版), 2018, 58(2): 188-191.
[13] 明亮, 杨小勇, 张佑杰, 王捷, 傅林, 李珊, 王琦. 叶顶间隙与轴向间隙对氦气压气机气动特性的影响[J]. 清华大学学报(自然科学版), 2017, 57(8): 832-837.
[14] 张竞宇, 李富, 孙玉良. 球床高温气冷堆初装堆芯的物理计算方法及验证[J]. 清华大学学报(自然科学版), 2017, 57(4): 405-409.
[15] 曲新鹤, 杨小勇, 王捷. 商用高温气冷堆氦气透平循环发电热力学参数分析和优化[J]. 清华大学学报(自然科学版), 2017, 57(10): 1114-1120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn