Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (8): 1291-1296    DOI: 10.16511/j.cnki.qhdxxb.2023.25.028
  论文 本期目录 | 过刊浏览 | 高级检索 |
还原氧化石墨烯纳米流体池沸腾强化换热实验
黄潇立1, 陈泽亮1, 桂南1, 杨星团1, 屠基元1,2, 姜胜耀1
1. 清华大学 核能与新能源技术研究院, 先进反应堆工程教育部重点实验室, 先进核能技术协同创新中心, 北京 100084, 中国;
2. 皇家墨尔本理工大学 工学院, 墨尔本 VIC 3083, 澳大利亚
Experimental study on pool boiling heat transfer enhancement in reduced graphene oxide nanofluid
HUANG Xiaoli1, CHEN Zeliang1, GUI Nan1, YANG Xingtuan1, TU Jiyuan1,2, JIANG Shengyao1
1. Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
2. School of Engineering, RMIT University, Melbourne VIC 3083, Australia
全文: PDF(2547 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 以还原氧化石墨烯(reduced graphene oxide,RGO)纳米流体为实验工质,进行常压下的饱和池沸腾换热特性实验研究,并使用高速摄像机记录沸腾过程中的气泡形态,分析数据和图像结果。实验结果表明:RGO纳米流体对池沸腾的临界热流密度(critical heat flux,CHF)有明显提升作用,使其达到了1684.22kW/m2,相较于蒸馏水工质提高了49.2%,但对沸腾换热系数(heat transfer coefficient,HTC)的影响幅度不大,HTC只达到73.87kW/(m2·K),相较于蒸馏水工质提高了2.3%,在相同热流密度下,RGO纳米流体对壁面过热度的影响并不明显。通过对加热表面接触角的测量及汽泡可视化图像的分析发现:RGO纳米流体沸腾过程中在加热表面形成的沉积层是促使CHF提高的核心因素,其改变了加热表面的润湿性和汽化核心数,降低了加热表面气泡的脱离直径,提高了脱离频率,从而实现CHF的延迟出现。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄潇立
陈泽亮
桂南
杨星团
屠基元
姜胜耀
关键词 还原氧化石墨烯池沸腾纳米流体强化换热    
Abstract:[Objective] Continuous enhancement of energy efficiency is an essential element of China's green development plan to meet the peak carbon dioxide emission target by 2030 and carbon neutrality objective by 2060. Boiling heat transfer, being one of the most effective methods for phase-change heat transfer, is crucial for heat-energy transfer and conversion in various industries. Therefore, improved boiling performance can increase the efficiency, safety, and cost-effectiveness of energy systems. Graphene, a novel material discovered at the turn of the 21st century, has exceptional properties in numerous fields and can be used as nanoparticles for enhancing the heat transfer of base fluids. This research study aims to enhance boiling heat transfer by examining the effects of the heating surface and working fluids, specifically with graphene nanofluids.[Methods] Reduced graphene oxide (RGO) nanofluid, which is a product of graphene preparation via the redox method, was utilized as the working fluid. The experimental investigation aimed to examine the heat-transfer characteristics of RGO-nanofluid saturated pool boiling at atmospheric pressure. The experimental data were collected and analyzed using a high-speed camera to record the morphology of vapor bubbles during boiling. The research study also used a pool-boiling experiment with a pure copper heating surface and distilled water as the working fluid to provide benchmark data to compare with the RGO nanofluid experiment.[Results] The results indicated that the RGO nanofluids had a significant impact on the critical heat flux (CHF) of pool boiling, which reached 1 684.22 kW/m2, increased by 49.2% compared to distilled water. However, the nanofluids did not significantly affect the heat transfer coefficient (HTC) of pool boiling, which reached 73.87 kW/(m2·K), only increased by 2.3% compared to distilled water. At a constant heat-flow density, the effect of RGO nanofluids on the superheated wall was insignificant. Further analysis of the experimental data revealed that the RGO deposition layer formed by the RGO nanofluids on the heated surface during boiling was the core factor contributing to the increase in CHF. The deposition layer changed the wettability and vaporization core number of the surface, reduced the detachment diameter of vapor bubbles on the heated surface, and increased the detachment frequency, which delayed the appearance of CHF. This was supported by the measurement of the contact angle of the heated surface, surface observation of the heated surface after boiling, and analysis of the vapor bubble visualization images.[Conclusions] In conclusion, this study demonstrated that the use of RGO nanofluids can significantly improve the critical heat flux of pool boiling, which can contribute to the efficiency, safety, and cost-effectiveness of energy systems. The results also provide insights into the mechanism of heat transfer enhancement through the use of RGO nanofluids, specifically through the formation of a deposition layer on the heated surface during boiling. These findings can have practical implications in various industrial applications, including nuclear reactors, electronic cooling systems, and heat exchangers. However, further research is necessary to optimize the use of graphene nanofluids in various industrial applications and to assess their long-term effects on energy systems.
Key wordsreduced graphene oxide    pool boiling    nanofluid    enhanced heat transfer
收稿日期: 2023-02-09      出版日期: 2023-07-22
基金资助:国家科技重大专项(2011ZX06901-003)
通讯作者: 桂南,副教授,E-mail:guinan@mail.tsinghua.edu.cn      E-mail: guinan@mail.tsinghua.edu.cn
作者简介: 黄潇立(1995-),女,博士研究生;陈泽亮(1991-),男,博士研究生。
引用本文:   
黄潇立, 陈泽亮, 桂南, 杨星团, 屠基元, 姜胜耀. 还原氧化石墨烯纳米流体池沸腾强化换热实验[J]. 清华大学学报(自然科学版), 2023, 63(8): 1291-1296.
HUANG Xiaoli, CHEN Zeliang, GUI Nan, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Experimental study on pool boiling heat transfer enhancement in reduced graphene oxide nanofluid. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1291-1296.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.25.028  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I8/1291
  
  
  
  
  
  
[1] NUKIYAMA S. The maximum and minimum values of heat Q transmitted from metal to boiling water under atmospheric pressure[J]. Journal of Japanese Society of Mechanical Engineering, 1934, 37:367-374.
[2] 陈泽亮, 黄潇立, 吴达岭, 等. 临界热流密度实验技术研究进展[J]. 实验技术与管理, 2022, 39(8):10-16. CHEN Z L, HUANG X L, WU D L, et al. Investigation progress on the experimental technology of critical heat flux[J]. Experimental Technology and Management, 2022, 39(8):10-16. (in Chinese)
[3] CHOI S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[C]//Proceedings of 1995 International Mechanical Engineering Congress and Exhibition. San Francisco, USA:ASME, 1995:196525.
[4] YOU S M, KIM J H, KIM K H. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer[J]. Applied Physics Letters, 2003, 83(16):3374-3376.
[5] 赖富兴. 六方氮化硼纳米流体池沸腾换热特性[D]. 重庆:重庆大学, 2017. LAI F X. Pool boiling heat transfer characteristics of h-BN nanofluid[D]. Chongqing:Chongqing University, 2017. (in Chinese)
[6] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[7] NANDANAPALLI K R, MUDUSU D, LEE S. Functionalization of graphene layers and advancements in device applications[J]. Carbon, 2019, 152:954-985.
[8] 黄潇立, 陈泽亮, 桂南, 等. 石墨烯强化沸腾传热研究进展及应用综述[J]. 清华大学学报(自然科学版), 2022, 62(10):1681-1690. HUANG X L, CHEN Z L, GUI N, et al. Review of graphene enhanced boiling heat transfer[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10):1681-1690. (in Chinese)
[9] AHN H S, KIM J M, KAVIANY M, et al. Pool boiling experiments in reduced graphene oxide colloids. Part I-Boiling characteristics[J]. International Journal of Heat and Mass Transfer, 2014, 74:501-512.
[10] KIM J M, KIM J H, PARK S C, et al. Nucleate boiling in graphene oxide colloids:Morphological change and critical heat flux enhancement[J]. International Journal of Multiphase Flow, 2016, 85:209-222.
[11] ZUBER N. Hydrodynamic aspects of boiling heat transfer[J]. Aec Report. 1959:AECU-4439.
[12] HUANG X L, CHEN Z L, GUI N, et al. Pool boiling experiment characteristics on the pure copper surface[J]. Experimental and Computational Multiphase Flow, 2023, 5(2):192-198.
[1] 黄潇立, 陈泽亮, 桂南, 宫厚军, 杨星团, 屠基元, 姜胜耀. 石墨烯强化沸腾传热研究进展及应用综述[J]. 清华大学学报(自然科学版), 2022, 62(10): 1681-1690.
[2] 袁杨, 李祥东, 屠基元. 纳米流体沸腾模型中某些物理参数的理论探讨[J]. 清华大学学报(自然科学版), 2015, 55(7): 815-820.
[3] AbdoulayeCoulibaly, 林曦鹏, 毕景良, 柯道友. 过冷池沸腾中气泡聚并对壁面换热影响的实验研究[J]. 清华大学学报(自然科学版), 2014, 54(2): 240-246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn