Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (9): 1317-1325    DOI: 10.16511/j.cnki.qhdxxb.2023.22.029
  大数据 本期目录 | 过刊浏览 | 高级检索 |
面向大规模交通网络的时空关联挖掘方法
范晓亮, 彭朝鹏, 郑传潘, 王程
厦门大学 信息学院, 计算机科学与技术系, 厦门 361005
Spatio-temporal correlation mining method for large-scale traffic networks
FAN Xiaoliang, PENG Zhaopeng, ZHENG Chuanpan, WANG Cheng
Department of Computer Science and Technology, School of Informatics, Xiamen University, Xiamen 361005, China
全文: PDF(6859 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 时空关联挖掘是智能交通领域的关键技术之一。 大规模交通网络中的交通流量数据具有高度非线性和复杂特征, 故精准地预测交通流量面临巨大挑战。 现有方法大多设计2个独立模块来分别捕获交通流量的时间和空间相关性, 故无法精准地对流量数据中的复杂时空相关性建模。 该文提出一种时空组合图卷积神经网络(STCGCN), 以更好地预测交通流量。 STCGCN通过构建自适应时空组合图, 并提出时空组合图卷积, 来有效揭示交通流量数据动态和复杂的时空相关性。 在美国加利福尼亚州高速公路流量公开数据集上进行了实验, 结果表明STCGCN的预测效果优于11个现有方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范晓亮
彭朝鹏
郑传潘
王程
关键词 交通流量预测时空数据挖掘图卷积网络大数据融合分析    
Abstract:[Objective] Spatio-temporal correlation mining is a key technology in intelligent transportation systems and is usually applied to spatio-temporal data prediction problems such as traffic flow prediction. Accurately predicting traffic flows in urban management is extremely important for alleviating urban traffic congestion, improving traffic efficiency, and reducing traffic accident occurrences. However, it is extremely challenging to accurately predict traffic flows in large-scale traffic networks due to the high nonlinearity and complexity of the massive traffic flow data. Most existing methods usually conduct two separate components to capture the spatial and temporal correlations. A static spatial graph is constructed for each time step in the spatial dimension; furthermore, the same nodes on different time steps are connected to build a spatio-temporal graph in the temporal dimension. However, the potential correlations between the traffic flow data of different nodes at different time steps are ignored and the complex spatio-temporal correlations in the traffic flow data cannot be effectively modeled. [Methods] In this paper, we proposed a spatio-temporal combinational graph convolutional network (STCGCN) to address the issue of traffic flow prediction. STCGCN consisted of three modules: the spatio-temporal combinational graphs (STCG) construction module, the spatio-temporal combinational graph convolution (STCGC) module, and the prediction module. The STCG construction module constructed an adaptive STCG adjacency matrix across temporal slices based on spatio-temporal embedding vectors, which could automatically learn parameters during training, accommodate complex spatio-temporal correlations between nodes, and solve the problem that existing prediction methods hardly captured the potential spatio-temporal correlation between nodes. The STCGC module designed adaptive STCGC operators and adaptive STCGC layers to extract spatio-temporal features from historical traffic data of nodes and the constructed adaptive STCG. Finally, the prediction module aggregated the hidden layer representation of all historical time steps obtained using the STCGC module and outputed the prediction result via fully connected layer mapping. We evaluated STCGCN on PeMSD4 and PeMSD8, two public datasets from Caltrans performance measurement system (PeMS), by comparing it with 11 baseline methods: vector autoregressive (VAR), support vector regression (SVR), fully connected long-short term memory (FC-LSTM) neural network, diffusion convolutional recurrent neural network (DCRNN), spatio-temporal graph convolutional networks (STGCN), attention based spatial-temporal graph convolutional networks (ASTGCN), Graph WaveNet, spatial-temporal synchronous graph convolutional networks (STSGCN), adaptive graph convolutional recurrent network (AGCRN), graph multi-attention network (GMAN), and time zigzags at graph convolutional networks (Z-GCNETs). We adopted two widely used metrics for evaluation: mean absolute error and root mean squared error. [Results] The experimental results revealed that using a unified component, the proposed STCGCN model effectively modeled the dynamic temporal correlation, spatial correlation, and cross-spatio-temporal correlation in the traffic flow data. Furthermore, the model achieved the best prediction results at each moment, and its error growth was slower than other baseline methods as the prediction time increased. We also explored the effect of three hyperparameter settings in STCGCN on model performance, and the experiments demonstrated differential model performance under different hyperparameter settings. The number of parameters and training times of all models, including STCGCN and 11 baseline methods, were compared at the end of the experiment. The results showed that the STCGCN achieved the best model performance with the least number of model parameters and training time, and the algorithm efficiency was close to the best. [Conclusions] Experiments on the public datasets show that the STCGCN model outperforms 11 baseline methods in prediction accuracy.
Key wordstraffic flow prediction    spatio-temporal data mining    graph convolutional networks    big data fusion and analysis
收稿日期: 2023-03-09      出版日期: 2023-08-19
基金资助:国家自然科学基金面上项目(62272403, 61872306)
通讯作者: 王程,教授,E-mail:cwang@xmu.edu.cn      E-mail: cwang@xmu.edu.cn
作者简介: 范晓亮(1982-),男,高级工程师。
引用本文:   
范晓亮, 彭朝鹏, 郑传潘, 王程. 面向大规模交通网络的时空关联挖掘方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1317-1325.
FAN Xiaoliang, PENG Zhaopeng, ZHENG Chuanpan, WANG Cheng. Spatio-temporal correlation mining method for large-scale traffic networks. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1317-1325.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.029  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I9/1317
  
  
  
  
  
  
  
  
  
  
[1] VERES M, MOUSSA M. Deep learning for intelligent transportation systems: A survey of emerging trends[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(8): 3152-3168.
[2] LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada: OpenReview.net, 2018: 1-16.
[3] YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm, Sweden: ijcai.org, 2018: 3634-3640.
[4] ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI Press, 2017: 1655-1661.
[5] 冯宁, 郭晟楠, 宋超, 等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30(3): 759-769. FENG N, GUO S N, SONG C, et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019, 30(3): 759-769. (in Chinese)
[6] ZHENG C P, WANG C, FAN X L, et al. STPC-Net: Learn massive geo-sensory data as spatio-temporal point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 11314-11324.
[7] BOX G, JENKINS G, REINSEL G, et al. Time series analysis: Forecasting and control[M]. 5th ed. Hoboken, USA: John Wiley and Sons, 2015.
[8] WU C H, HO J M, LEE D T. Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(4): 276-281.
[9] ZHENG C P, FAN X L, WEN C L, et al. DeepSTD: Mining spatio-temporal disturbances of multiple context factors for citywide traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3744-3755.
[10] 徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780. XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780. (in Chinese)
[11] WU Z H, PAN S R, LONG G D, et al. Graph wavenet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China: AAAI Press, 2019: 1907-1913.
[12] GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. Honolulu, USA: AAAI Press, 2019: 114.
[13] SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting[C]//Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence. New York, USA: AAAI Press, 2020: 914-921.
[14] ZHENG C P, FAN X L, WANG C, et al. GMAN: A graph multi-attention network for traffic prediction[C]//Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence. New York, USA: AAAI Press, 2020: 1234-1241.
[15] BAI L, YAO L N, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates, 2020: 1494.
[16] CHEN Y Z, SEGOVIA-DOMINGUEZ I, GEL Y R. Z-GCNETs: Time zigzags at graph convolutional networks for time series forecasting[C]//Proceedings of the 38th International Conference on Machine Learning. Held Virtually: PMLR, 2021: 1684-1694.
[17] DENG D X, SHAHABI C, DEMIRYUREK U, et al. Latent space model for road networks to predict time-varying traffic[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA: ACM, 2016: 1525-1534.
[18] KIPF T N, WELLING M. Semi-supervised classification withgraph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations. Toulon, France: OpenReview.net, 2017: 1-14.
[19] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 770-778.
[20] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014: 3104-3112.
[1] 邢宇杰, 王啸, 石川, 黄海, 崔鹏. 基于节点特征对抗性攻击的图对比学习鲁棒性验证[J]. 清华大学学报(自然科学版), 2024, 64(1): 13-24.
[2] 黄颙昊, 杨新苗, 岳锦涛. 基于多尺度地理加权回归模型的城市道路骑行流量分析[J]. 清华大学学报(自然科学版), 2022, 62(7): 1132-1141.
[3] 喻宏伟, 周东波, 徐雯慧, 余雅滢, 王小梅, 涂悦. 基于多片段语义时空图卷积网络的大学生校园日常行为预测[J]. 清华大学学报(自然科学版), 2022, 62(1): 105-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn