Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (9): 1415-1427    DOI: 10.16511/j.cnki.qhdxxb.2023.21.014
  车辆与交通 本期目录 | 过刊浏览 | 高级检索 |
基于不安全控制行为分析的商用车AEB决策系统优化
周涂强1, 刘伟1, 李浩然2,3, 许述财3,4, 孙川3,5
1. 华东交通大学 交通运输工程学院, 南昌 330013;
2. 武汉科技大学 汽车与交通工程学院, 武汉 430081;
3. 清华大学苏州汽车研究院(相城), 苏州 215299;
4. 清华大学 汽车安全与节能国家重点实验室, 北京 100084;
5. 香港理工大学 土木及环境工程学系, 香港 999077
Improvement of an autonomous emergency-braking decision-making system for commercial vehicles based on unsafe control strategy analysis
ZHOU Tuqiang1, LIU Wei1, LI Haoran2,3, XU Shucai3,4, SUN Chuan3,5
1. School of Transportation Engineering, East China Jiaotong University, Nanchang 330013, China;
2. School of Automobile and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
3. Suzhou Automotive Research Institute (Xiangcheng), Tsinghua University Suzhou, 215299, China;
4. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China;
5. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
全文: PDF(9243 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 现有的基于车载传感器的商用车自动紧急制动(AEB)系统存在视野盲区等原因, 功能受到了很大的限制。 为了提高商用车AEB系统的安全性和可靠性, 该文提出了基于不安全控制行为分析的商用车AEB决策系统优化方法。 首先, 通过实车测试获取车车通信在不同工况下的通信时延规律, 使用该时延规律对环境车的速度、 位移和坐标等参数进行补偿修正, 弥补通信时延对系统决策造成的影响。 然后, 制定交叉口路段处的商用车自动紧急制动策略, 在两车即将碰撞时控制本车的制动系统以最大的制动减速度自动紧急制动, 避免碰撞的发生, 并基于不安全控制行为分析, 对AEB决策系统进行优化。 最后对提出的优化方法进行了仿真和实车测试, 结果表明, 该方法能够有效地防止两车在交叉口处相撞, 具有较高的安全性和可靠性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周涂强
刘伟
李浩然
许述财
孙川
关键词 智能交通自动紧急制动车-路协同通信时延车辆避撞    
Abstract:[Objective] Most current automatic emergency-braking (AEB) systems perceive the surrounding environment through on-board sensors, which generally encounter the following issues: the cost of lidar is high, their performance in the presence of smoke medium and rain and snow weather is imprecise and is restricted by long-distance energy loss, and the millimeter-wave radar can only sense obstacles in a short distance. The monocular/binocular camera is greatly affected by objective factors, such as reduced visibility due to weather and nighttime, resulting in a small observation distance. At the intersection, the road traffic environment is complex, specifically when a commercial vehicle has a remarkable blind spot, and the function of the vehicle sensor is greatly limited.[Methods] To improve the safety and reliability of AEB systems, this work designs and studies an AEB system for commercial vehicles based on unsafe control behavior. First, a compensation method is proposed on the basis of the characteristics of vehicle-to-vehicle communication delay under different conditions. Real vehicle tests are conducted to collect data regarding the communication delay of vehicle-mounted communication equipment transmitting self-vehicle information under different working conditions. The average value is taken as the delay compensation in the safety distance and then added as compensation data to the established safety distance model in the AEB system based on vehicle-road coordination. The delay law is used to correct parameters such as the speed, displacement, and coordinates of the environmental vehicle to compensate for the impact of communication delay on system decision-making. An AEB strategy for commercial vehicles at the intersection section is described. The contours of the two vehicles are projected onto a coordinate system to determine whether the two vehicles overlap. When a collision risk is detected, the collision avoidance strategy of the two vehicles at the road intersection is implemented. When the two vehicles are about to collide, the braking system of the vehicle is controlled to brake automatically and urgently with maximum braking deceleration to avoid collision. Furthermore, the unsafe control behavior causing the accident is determined through analysis, and the corresponding safety constraints are used to optimize the algorithm strategy. Finally, the proposed algorithm is simulated and tested.[Results] Results show that the proposed AEB algorithm based on unsafe control behavior can effectively prevent the collision of two vehicles at the intersection and has high safety and reliability.[Conclusions] This study has a few limitations and shortcomings. This work only considers the influence of communication delay and braking onset stage on the safe braking distance, and the collision avoidance strategy only considers the scene of a straight intersection. In future research, consideration will be given to the factors affecting the ability to obtain an accurate and safe braking distance, and 5G technology will be gradually applied to an AEB system based on vehicle-road coordination.
Key wordsintelligent transportation    automatic emergency braking    vehicle-to-road coordination    communication delay    vehicle collision avoidance
收稿日期: 2022-12-10      出版日期: 2023-08-19
基金资助:国家重点研发计划(2018YFE0204302); 国家自然科学基金青年基金项目(52202413, 52002215); 香江学者计划(XJ2021028); 江苏省自然科学基金青年基金项目(BK20220243); 湖北省科技计划项目(2021BEC005, 2021BLB225)
通讯作者: 许述财,副研究员,E-mail:xushc@tsinghua.edu.cn      E-mail: xushc@tsinghua.edu.cn
作者简介: 周涂强(1990-),男,讲师。
引用本文:   
周涂强, 刘伟, 李浩然, 许述财, 孙川. 基于不安全控制行为分析的商用车AEB决策系统优化[J]. 清华大学学报(自然科学版), 2023, 63(9): 1415-1427.
ZHOU Tuqiang, LIU Wei, LI Haoran, XU Shucai, SUN Chuan. Improvement of an autonomous emergency-braking decision-making system for commercial vehicles based on unsafe control strategy analysis. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1415-1427.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.21.014  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I9/1415
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] SANDER U, LUBBE N. The potential of clustering methods to define intersection test scenarios: Assessing real-life performance of AEB[J]. Accident Analysis & Prevention, 2018, 113: 1-11.
[2] EURO NCAP test protocol-AEB systems version 1.1[EB/OL]. (2015-07-06)[2023-4-25]. https://cdn.euroncap.com/media/17719/euro-ncap-aeb-test-protocol-v11.pdf.
[3] 戴荣军, 周俊, 王海清. 新型主动防撞安全预警距离模型[J]. 农业装备与车辆工程, 2014, 52(8): 42-47. DAI R J, ZHOU J, WANG H Q. A new safety forewarning distance model for vehicle collision avoidance[J]. Agricultural Equipment & Vehicle Engineering, 2014, 52(8): 42-47. (in Chinese)
[4] CHEN D X, HE L, ZONG C F, et al. Study on modeling and simulation of vehicle safety distance in low speed for rear-end collision avoidance[J]. Advanced Materials Research, 2013, 694-697: 3375-3380.
[5] 于佳. 基于驾驶员特性的汽车防撞安全距离算法研究[D]. 大连: 大连理工大学, 2018. YU J. Research on vehicle collision avoidance safety distance algorithm based on driver characteristics[D]. Dalian: Dalian University of Technology, 2018. (in Chinese)
[6] 陆阳. 汽车前方防撞系统中安全预警算法研究[D]. 成都: 西南石油大学, 2015. LU Y. Research on safety early warning algorithm in vehicle front collision avoidance system[D]. Chengdu: Southwest Petroleum University, 2015. (in Chinese)
[7] GUO J H, WANG Y H, YIN X J, et al. Study on the control algorithm of automatic emergency braking system (AEBS) for commercial vehicle based on identification of driving condition[J]. Machines, 2022, 10(10): 895.
[8] MIHOLJCIC D, FABBRONI M, ROBINSON R. A study of the performance of automatic emergency braking (AEB) systems equipped on passenger vehicles for model years 2013 to 2018[R]. SAE Technical Paper 2019-01-0416, SAE, 2019.
[9] 杨敏, 王立超, 张健, 等. 面向智慧高速的合流区协作车辆冲突解脱协调方法[J]. 交通运输工程学报, 2020, 20(3): 217-224. YANG M, WANG L C, ZHANG J, et al. Collaborative method of vehicle conflict resolution in merging area for intelligent expressway[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 217-224. (in Chinese)
[10] 王建强, 吴辰文, 李晓军. 车联网架构与关键技术研究[J]. 微计算机信息, 2011, 27(4): 156-158, 130. WANG J Q, WU C W, LI X J. Research on the architecture and key technologies of internet of vehicles[J]. Microcomputer Information, 2011, 27(4): 156-158, 130. (in Chinese)
[11] 李艳, 刘丹, 卢圆薇, 等. 车联网技术与应用前景分析[J]. 通信与信息技术, 2022(S2): 50-53. LI Y, LIU D, LU Y W, et al. Analysis on internet of vehicles technology and application prospect[J]. Communication & Information Technology, 2022(S2): 50-53. (in Chinese)
[12] 何通, 黄鹏, 黄腾. 商用车自动紧急制动技术研究进展[J]. 汽车实用技术, 2023, 48(4): 201-204. HE T, HUANG P, HUANG T. Research progress of automatic emergency braking technology for commercial vehicles[J]. Automobile Applied Technology, 2023, 48(4): 201-204. (in Chinese)
[13] LEVESON N. A new accident model for engineering safer systems[J]. Safety Science, 2004, 42(4): 237-270.
[14] 陈君毅, 刘力豪, 周堂瑞, 等. 城市自动驾驶决策系统安全分析与策略设计[J]. 同济大学学报(自然科学版), 2020, 48(12): 1810-1817. CHEN J Y, LIU L H, ZHOU T R, et al. Safety analysis and strategy design for decision system of urban autonomous driving vehicles[J]. Journal of Tongji University (Natural Science), 2020, 48(12): 1810-1817. (in Chinese)
[15] 孔金生, 郭非, 王希萍. 基于安全距离模型的汽车防追尾避撞方法[J]. 微计算机信息, 2008, 24(32): 251-252, 271. KONG J S, GUO F, WANG X P. A vehicle rear-end anti-collision method base on safety distance model[J]. Microcomputer Information, 2008, 24(32): 251-252, 271. (in Chinese)
[16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 合作式智能运输系统专用短程通信第1部分: 总体技术要求: GB/T 31024.1-2014[S]. 北京: 中国标准出版社, 2015. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Cooperative intelligent transportation systems- Dedicated short range communications-Part 1: General technical requirement: GB/T 31024.1-2014[S]. Beijing: Standards Press of China, 2015. (in Chinese)
[17] HE Y, YAN X P, CHU D F, et al. A probabilistic prediction model for the safety assessment of HDVs under complex driving environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 858-868.
[18] SUN C, WU C Z, CHU D F, et al. Risk prediction for curve speed warning by considering human, vehicle, and road factors[J]. Transportation Research Record: Journal of the Transportation Research Board, 2016, 2581(1): 18-26.
[19] 肖航. 基于制动/转向的汽车主动避撞控制研究[D]. 重庆: 重庆理工大学, 2020. XIAO H. Research on vehicle active collision avoidance control based on braking and steering[D]. Chongqing: Chongqing University of Technology, 2020. (in Chinese)
[20] AHREMS J. Collision warning algorithm for passage of an uncontrolled road intersection[C]// Proceedings of the 14th Biennial Baltic Electronic Conference. Tallinn, Estonia: IEEE, 2014: 49-52.
[21] 李刚, 杨志, 吴迪. 汽车两级自动紧急制动系统控制研究[J]. 机械设计与制造, 2020(7): 134-138. LI G, YANG Z, WU D. Study on two-level automatic emergency braking system control of automobile[J]. Machinery Design & Manufacture, 2020(7): 134-138. (in Chinese)
[22] ZHAO Z G, ZHENG X J, Wang J Q, et al. Assessing performance of collision mitigation brake system in Chinese traffic environment[J]. Journal of Central South University, 2019, 26(10): 2854-2869.
[23] 周炜, 曲保章, 李文亮, 等. 营运车辆自动紧急制动系统性能要求和测试规程: JT/T 1242—2019[S]. 北京: 中国标准出版社, 2019. ZHOU W, QU B Z, LI W L, et al. Performance requirements and test procedures for automatic emergency braking system of commercial vehicles: JT/T 1242—2019[S]. Beijing: Standards Press of China, 2019. (in Chinese)
[24] 宁航, 南春丽, 杨澜, 等. 汽车制动力曲线异常检测[J]. 交通运输工程学报, 2018, 18(6): 82-92. NING H, NAN C L, YANG L, et al. Anomaly detection of automobile braking curves[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 82-92. (in Chinese)
[25] CHU D F, DENG Z J, HE Y, et al. Curve speed model for driver assistance based on driving style classification[J]. IET Intelligent Transport Systems, 2017, 11(8): 501-510.
[26] 工业和信息化部, 公安部, 交通运输部. 智能网联汽车道路测试与示范应用管理规范(试行)[EB/OL]. (2021-08-04)[2023-05-24]. http://www.gov.cn/zhengce/zhengceku/2021-08/03/content_5629199.htm. Ministry of Industry and Information Technology, Ministry of Public Security, Ministry of Transport. Management specification for road testing and demonstration applications of intelligent connected vehicles (Trial)[EB/OL]. (2021-08-04)[2023-05-24]. http://www.gov.cn/zhengce/zhengceku/2021-08/03/content_5629199.htm. (in Chinese)
[1] 李瑞敏, 王长君. 智能交通管理系统发展趋势[J]. 清华大学学报(自然科学版), 2022, 62(3): 509-515.
[2] 张书玮, 冯桂璇, 樊月珍, 万爽, 罗禹贡. 基于信息交互的大规模电动汽车充电路径规划[J]. 清华大学学报(自然科学版), 2018, 58(3): 279-285.
[3] 奇格奇, 吴建平, 杜怡曼, 贾宇涵. 快速城镇化背景下的驾驶风格多样性分析[J]. 清华大学学报(自然科学版), 2016, 56(12): 1320-1326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn